Targeting Laser Technology for NIF

Also in this issue:

• Carbon Dioxide’s Role in Global Warming
• Software for Safety-Critical Systems
• LLNL’s Strategy for EUV Lithography
Researchers at Livermore’s National Ignition Facility (NIF) are developing, testing, and validating many technologies especially for the new facility, which will be completed in 2003. For example, technician Wanda Dallum holds a flashlamp—the largest commercially made—one of 7,600 flashlamps to be used in the NIF amplifier modules. In the background, one of the main amplifier modules glows during a test of flashlamps. This image is part of an animated sequence that can be seen on the Internet at http://lasers.llnl.gov/lasers/1st/SSL/.
Workers unearth 10,000-year-old fossils

Bones from what is thought to be a mammoth were unearthed at the National Ignition Facility (NIF) construction site in December and January. Compacting the soil in a utilities trench more than 30 feet below ground level caused some soil to fall away, revealing a tusk and some back and hip bones.

The find is a more complete mammoth skeleton than usual, says principal scientist Mark Goodwin of the Museum of Paleontology at the University of California, Berkeley. "It's significant because we [also] have a partial skull and nearly complete lower jaw. It gives people a slice of life of what California was tens of thousands of years ago. It's our fossil heritage." The tusk alone weighs some 150 to 200 pounds. Goodwin estimated that the bones may be between 10,000 and 75,000 years old.

An excavation team carefully exposed and cleaned the bones, applied a hardening varnish, and covered the bones with a layer of wet paper towels followed by strips of burlap dipped in plaster for the move to Berkeley's Museum of Paleontology, where they will be further cleaned and preserved.

Contact: Public Affairs Office (510) 422-4589 (garberson1@llnl.gov).

PHENIX magnet tested

The search for the elusive quark–gluon plasma, a form of matter believed to hold subatomic matter together, took a major step forward with the successful testing of the first of three magnets for the PHENIX (Photon Electron New Heavy Ion Experiment) Detector System. A team of Livermore scientists was responsible for the design, supervision of fabrication, and testing of the magnet system, which will be part of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory.

Heavy-ion particles produced by the RHIC accelerator collide in the center of the magnet of PHENIX and produce a distinctive signature associated with the collisions. From resulting data, scientists hope to pinpoint the presence and behavior of the quark–gluon plasma.

The National Academy of Sciences calls the RHIC and PHENIX experiment "the No. 1 priority for nuclear physics going into the 21st century."

Contact: Bob Yamamoto (510) 422-5736 (yamamoto1@llnl.gov).

Contact: Public Affairs Office (510) 423-3177 (yano1@llnl.gov).

Developing the World’s Largest Precision Optical Instrument

The National Ignition Facility (NIF) Project is being built as a major component of the Department of Energy’s Stockpile Stewardship Program to preserve confidence in the safety and reliability of remaining U.S. nuclear weapons and to preserve core nuclear weapons competencies in the absence of nuclear testing.

NIF is the largest and most complex project the Laboratory has ever undertaken. It will contain the world’s largest laser, which will be the world’s largest precision optical instrument of any kind, having more than three-quarters of an acre of precision optical surfaces. With many missions and objectives, this gigantic laser must still be very flexible and precise. As we have learned from our experience, NIF must have precision temporal control, coherence control, and focal spot beam control. The NIF laser cannot be merely an experiment; rather, it must be the precision tool used for the experiments on fusion targets. It must perform reliably over a wide variety of specifications and be available at the planned shot rate.

The cover article of this issue, beginning on p. 4, addresses the extensive laser development program we have planned and are now completing to ensure that the NIF laser will indeed perform as planned and will meet its budget and schedule. Assuming ignition and gain are achieved, NIF will also be the scientific proof of principle of using inertial fusion as an energy source. Although it will require many technology developments, inertial fusion energy will not contribute to global warming, a very serious world issue (see article beginning on p. 14). Finally, NIF will open doors for the basic sciences in the study of high-energy-density physics, the physics of the stars.

In the face of such a daunting task, we are nonetheless confident that NIF will be successful. Over the last 25 years, Livermore has built a world-renowned collection of laser scientists, engineers, and technological capabilities; we also have an excellent infrastructure to support it. This outstanding combination of science and engineering makes the massive NIF undertaking a logical extension on a grand scale of what we have accomplished before.

Critical partners are helping us accomplish this undertaking and critiquing our work. France has been an important partner in developing the laser and optics technology for NIF and for their own planned counterpart, the Laser Mégajoule, which is a part of their stewardship program. We have also had valuable contributions from Sandia National Laboratories in pulsed-power technology and from the University of Rochester and Los Alamos National Laboratory in optics technology. Their overall contributions to the project both technically and managerially are significant.

Building NIF helps the Laboratory maintain its leading role in the science and technology of lasers and optics. NIF is pressing the state of the art in many areas. For example, we had to develop the world’s largest optical amplifiers and optical switches to make NIF possible at an affordable cost. The optical pulse generation system for NIF will be a major step in laser control and flexibility. On Beamlet, the one-beam testbed, we had to prove the performance of new optics that run at very high optical fluence.

These developments create new opportunities for the Laboratory and for the companies we are working with. An example of such spinoffs in inertial confinement fusion is our extreme ultraviolet lithography program (see "Keeping the ‘More’ in Moore’s Law," pp. 24–30), which grew out of our target physics diagnostic work and now promises to change the way semiconductor circuits are made. Building NIF keeps the Laboratory squarely in the worldwide leadership role in this field as we approach the next millennium.

E. Michael Campbell is Associate Director, Laser Programs

Science & Technology Review March 1998

Science & Technology Review March 1998
Physicist Howard Powell, head of the LS&T Program, points out that NIF’s projected power, enough for laboratory fusion experiments to achieve energy break-even and gain for the first time, necessitates a laser facility with unparalleled levels of sophistication. “We’re going from working with Nova’s 10 beams to manipulating 24 sets of ‘bundles’ containing 8 beams apiece. That’s a big leap.”

The size of NIF has required new, multibeam components and controls and new techniques for troubleshooting and maintaining the giant laser. The effort... is being paid to maintain cleanliness throughout the huge system to prolong the life of all components.

Powell points out that some of the laser technology development has been done in collaboration with colleagues from the French Commissariat à l’Energie Atomique (CEA), other DOE national laboratories, and the University of Rochester. The French agency plans to build its Ligne d’Intégration Laser by 2001 and its Laser Mégajoule with specifications similar to NIF’s by 2010. Other productive collaborations include those forged with literally hundreds of vendors. Beginning next year, these companies will be manufacturing tens of thousands of NIF components, many of them to unprecedented levels of performance.

Fundamental to the development work has been a one-beam scientific testbed called Beamlet (see box, p. 8) that has permitted the online evaluation of the NIF laser design and operating specifications. Complementing Beamlet is Amplab, a complete working prototype of a NIF amplifier module for an eight-beam bundle.

As final design changes are made and prototypes are built and tested, an important focus has been on ensuring performance and reliability. “We’re going to be buying at least 192 of most items, so we want to make sure the parts work exactly as we specify,” notes Powell.

Driving Down Costs

Another major focus has been substantial cost reduction. New approaches to component design were required to reduce costs without impacting performance.

“The cost drives every design. We’re always questioning whether we can make it more compact or make fewer parts. Although the NIF facility will be enormous, it will be literally packed with components,” says Richard Sawicki, NIF associate project engineer for special equipment.

Some cost-effective measures have been relatively simple, such as making the laser beams square so they can be packed closer together to save space and multiplexing some components, such as the flashlamps in the main amplifiers. Other cost-saving measures, such as the multipass laser design, in which the beams are passed through the same amplifiers several times, are more complex; yet this design will save millions of dollars by reducing the number of amplifiers and facility space needed. Other designs emphasize the sharing of components wherever possible or mechanical structures that support several systems simultaneously.

Cost-cutting efforts rely increasingly on computer-aided design. “When we built Nova, the designers used pencil and paper and built a lot of full-scale models,” notes Sawicki. In contrast, NIF parts are designed and scrutinized on computer by a team of a hundred designers using the latest three-dimensional engineering software. Even entire systems, on the scale of hundreds...
of meters, are modeled on computers to make sure there is adequate room to move equipment in and out. Another major computer role is simulating the evolution of the beam as it propagates through every laser system. Livermore codes that model the work of the flashlamps and amplifiers as well as the beam itself are saving crucial development time. After analyzing the predicted performance, cost, and safety of over 100,000 design variations of the amplifier systems, the codes also were used to choose the optimum laser design.

Birth of a Pulse

The main laser components in NIF (Figure 1) take a low-power laser pulse from the master oscillator, shape and smooth it, amplify it enormously, and precisely direct it at a miniscule target called a hohlraum. Major laser components include the optical pulse generator, the amplifiers, the pulsed-power system to drive the amplifiers, the optical switch, a final optics assembly to perform three kinds of shaping of the input laser beams. Spatial shaping to make the square beam more intense around the edges to compensate for the higher gain profile in the center of the large amplifiers. Spectral shaping and beam smoothing to eliminate both hot spots and dark spots at the focus by manipulating the focal beam pattern with fast changes in wavelengths. Temporal shaping to ensure that the laser pulse delivers energy to the target with a prescribed time-history for efficient ignition.

Amplifying the Beam

The two large amplifier units in each NIF beamline are designed to efficiently amplify the nominal 1-joule input pulse from the OPG system to each of the 192 beams to the required power and energy, maintaining the input beam’s spatial, spectral, and temporal characteristics.

The amplifiers, with 16 glass slabs per beam, are arranged in two units—the so-called cavity amplifier and the booster amplifier. Together, they are the laser system’s central component. The main amplifiers provide 99.9% of NIF’s power and energy, so their performance is crucial,” says development scientist Chris Marshall. When fully integrated with optics, flashlamps, pulsed power, and other related components, the amplifiers are also the costliest NIF system.

“We’ve never built laser amplifiers on this scale,” comments NIF system engineer Doug Larson. “These are truly huge.” Indeed, at eight times the size of Nova’s amplifiers, NIF’s amplifiers use 42-kilogram slabs, 3.4 by 46 by 81 centimeters, of neodymium-doped phosphate glass set vertically on edge at Brewster’s angle, to create a polarizing effect, so that the laser beams have very low reflective losses while propagating through the glass. The slabs are stacked four high and two wide to accommodate a bundle of eight beams (Figure 4). The slabs are surrounded by vertical arrays of flashlamps. Measuring nearly 180 centimeters (6 feet) of arc length,
NIF’s 7,680 flashlamps are the largest commercial units ever made (Figure 5). Each driven with about 30,000 joules of electrical energy, the flashlamps excite the neodymium in the laser slabs to provide optical gain in the infrared spectrum. Some of the energy stored in the neodymium is released when the laser beam passes through. With a combination of increased efficiency, fewer amplifiers, and the use of larger flashlamps, NIF will need less than twice the number of flashlamps of Nova, even though the laser system will produce some 40 times more output energy.

This is the first time such active cooling will be used in Livermore’s fusion lasers. To ensure cleanliness, hermetically sealed blast shields will protect the laser slabs from possible contamination generated in the flashlamp cavities.

The amplifiers’ frame assembly units are supported from an overhead aluminum space frame to enable bottom access for cleaning and maintenance. A cassette of four slabs stacked two high and two wide, a prelude to the four-high, two-wide amplifiers now being developed for NIF. To reduce Beamlet costs, only one of the four apertures in the array contains high-quality laser glass. In addition, the amplifiers and other hardware rest on the floor rather than hang from a support frame as in the NIF design.

By simulating NIF operating conditions, Beamlet has demonstrated the viability of most of the NIF laser requirements, including the output power and focal parameters of the laser light and high-efficiency conversion of the laser light from 1.05 to 0.35 micrometers for illuminating the target. The results from Beamlet, Amplab, dozens of small laboratories, and computer design codes give laser scientists and engineers substantial confidence that NIF will meet its projected performance specifications.

Figure 5. (a) Technician Wanda Dallum holds a flashlamp, the largest commercial unit ever manufactured. (b) Technicians install a cassette of flashlamps in Livermore’s Amplab.

Figure 6. A technician, using a specially designed, ultraclean maintenance and assembly cart, inserts a cassette of four slabs into a frame assembly unit in the Amplab.

Figure 7. NIF’s 1.7-megajoule power conditioning modules, each housing 20 advanced capacitors, are being tested by Sandia National Laboratories, Albuquerque.

Storing the Energy

The power conditioning system provides the energy for the flashlamps with the highest-energy array of capacitors ever built. The system’s design is a collaboration among Sandia National Laboratories in Albuquerque, Lawrence Livermore, and industry. Sandia is responsible for designing the system, developing the switch, and testing the integrated module at its dedicated facilities, while Livermore is responsible for developing capacitors, power supplies, and other components. Ultimately, Sandia will lead the assembly installation and checkout of the NIF power-conditioning modules (Figure 7).

The power-conditioning system will occupy four capacitor bays, each 15 by 76 meters (50 by 250 feet), adjacent to each laser cluster. The system must deliver 8 pulses, a preionization pulse to prepare the lamps for main discharge, and a main pulse to provide energy to the flashlamps.

Twenty capacitors will be housed in 1.7-megajoule modules that support the flashlamps in parallel. Eight such modules are needed to power each laser bundle of eight beams. All together, NIF’s capacitor bank will store some 330 megajoules of energy, several times larger than Nova’s bank.

According to engineer Mark Newton, “We’re working to reduce the system...”
The Department of Energy’s National Ignition Facility will be an enormous facility, about 200 meters long by 85 meters wide (550 by 300 feet), a little smaller than a typical domed football stadium. NIF’s laser system will have 192 beams, each with a square aperture of about 40 centimeters per side and arranged in 24 beamlines of 8 beams each. Together the beams will produce 1.8 million joules (about 500 trillion watts of power, greater than 100 times the U.S. peak generating power) of laser light in the ultraviolet region at a wavelength of 0.35 micrometer for four billions of a second.

To achieve this power, the beams will precisely compress and heat to 100 million degrees a capsule 1 to 3 millimeters in diameter containing deuterium-tritium fuel. The result will be ignition (self-heating and enhanced combustion of the fusion fuel) for the first time in a laboratory, liberating up to 10 times the energy required to initiate the reaction.

This sequence of events will last long enough for researchers to make accurate measurements of the nuclear reaction’s temperature, pressure, and other properties. By providing these data, NIF will play a significant role in the DOE’s science-based Stockpile Stewardship Program to assure the safety and reliability of the nation’s nuclear weapons. The facility will also be used by scientists researching inertial confinement fusion energy and basic science such as astrophysics.

As Department of Energy Secretary Federico Pena commented at groundbreaking ceremonies last April, “NIF will unleash the power of the heavens to make Earth a better place.”

NIF’s total project cost is $1.2 billion, with design and construction managed by a partnership of Lawrence Livermore, Sandia, and Los Alamos national laboratories, and the University of Rochester. Engineering design began in 1996, construction began in 1997, and startup of one bundle of eight beams is planned for 2001. All 192 beams should be available for experiments by the end of 2003.

At a Glance: the National Ignition Facility

The Department of Energy’s National Ignition Facility will be an enormous facility, about 200 meters long by 85 meters wide (550 by 300 feet), a little smaller than a typical domed football stadium. NIF’s laser system will have 192 beams, each with a square aperture of about 40 centimeters per side and arranged in 24 beamlines of 8 beams each. Together the beams will produce 1.8 million joules (about 500 trillion watts of power, greater than 100 times the U.S. peak generating power) of laser light in the ultraviolet region at a wavelength of 0.35 micrometer for four billions of a second.

To achieve this power, the beams will precisely compress and heat to 100 million degrees a capsule 1 to 3 millimeters in diameter containing deuterium-tritium fuel. The result will be ignition (self-heating and enhanced combustion of the fusion fuel) for the first time in a laboratory, liberating up to 10 times the energy required to initiate the reaction.

This sequence of events will last long enough for researchers to make accurate measurements of the nuclear reaction’s temperature, pressure, and other properties. By providing these data, NIF will play a significant role in the DOE’s science-based Stockpile Stewardship Program to assure the safety and reliability of the nation’s nuclear weapons. The facility will also be used by scientists researching inertial confinement fusion energy and basic science such as astrophysics.

As Department of Energy Secretary Federico Pena commented at groundbreaking ceremonies last April, “NIF will unleash the power of the heavens to make Earth a better place.”

NIF’s total project cost is $1.2 billion, with design and construction managed by a partnership of Lawrence Livermore, Sandia, and Los Alamos national laboratories, and the University of Rochester. Engineering design began in 1996, construction began in 1997, and startup of one bundle of eight beams is planned for 2001. All 192 beams should be available for experiments by the end of 2003.

A Large Optical Switch

A key component in the laser chain is a kind of optical switch called a Pockels cell, which allows the beam to pass four times through the main amplifiers. This device uses electrically induced changes in the refractive index of an electro-optic crystal, made of potassium dihydrogen phosphate (KDP). When combined with a polarizer, the Pockels cell allows light to pass through or reflect off the polarizer. The NIF Pockels cell will essentially trap the laser light between two mirrors as it makes four one-way passes through the main cavity amplifiers before being switched out. The Pockels cell used in the NIF laser is a new type, called the plasma electrode Pockels cell (PEPC, like the soft drink), developed at Lawrence Livermore (Figure 8). “The PEPC makes possible NIF’s multipass architecture,” says engineer Mark Rhodes.

Rhodes explains that Pockels cells used to be limited to small diameters (Nova’s was 5 centimeters) because conventional designs required a KDP crystal about the same thickness as the beam diameter. NIF beams are 40 centimeters square, so crystals this thick would take too much space.

Instead, the PEPC uses a thin plate of KDP sandwiched between two gas-discharge plasmas that are so tenuous they have no effect on the laser beam passing through the cell. Nonetheless, the plasmas serve as conducting electrodes, allowing the entire surface of the thin crystal plate to charge electrically in about 100 nanoseconds so the entire beam can be switched efficiently.

The NIF design calls for four PEPCs stacked vertically in a single replaceable
The answer lay in a device called a deformable mirror, an adaptive optic that uses an array of actuators to bend its surface to compensate for wavefront errors. Advances in adaptive optics in the atomic vapor laser isotope separation (AVLIS) program demonstrated that a deformable mirror could meet the NIF performance requirement at feasible cost. Livermore researchers, led by physicist and systems engineer Erlan Bliss, developed a full-aperture (40 centimeters square), deformable mirror that was installed on Beamlet in early 1997 (Figure 9). Prototype mirrors from two vendors are scheduled to be tested in March 1998.

The deformable mirror is but one element of a comprehensive, computerized system to align and control each beam so that it accurately delivers its energy to the target. New alignment concepts and simplifications of previous laser systems were designed for more reliable performance at reduced cost per beam. Aided by the effort is a one-tenth-scale layout of a NIF beamline, built to test new alignment concepts and components and software. The model uses full-size components at most critical locations, allowing the alignment system to be validated using prototype NIF hardware.

The scope of beam control for NIF is well beyond that of Nova or any other laser because of the 192 beams. That means that the alignment time per beam must be reduced to achieve a reasonable shot rate, which will help to control costs.

"With 192 beams, the challenge is to build a very reliable, simple, and robust system so we can align the main laser section easily and confidently in about 30 minutes," says engineer Rich Zacharias. "The system has to be autonomous because we can't afford an army of technicians to baby each beam." Zacharias says each of the beams must be aligned at multiple points along the way, requiring a system of 12,000 actuators.

Heading toward 2001

"The laser development and engineering design team has done a terrific job," says NIF project manager Jeff Paisner, "but it still has to meet a challenging schedule in order to complete detailed designs by the end of fiscal 1998." Procurement of laser hardware is slated for 1999, and preliminary laser assembly in the facility is scheduled for 2000. By 2001, a complete bundle of eight beams is scheduled to be installed and thoroughly tested. Once the installation team has been trained and the bundle’s performance demonstrated, the 23 other bundles will be installed.

"The year 2001 may sound like it is way off in the future, but for us," Paisner says, "it’s just around the corner."

—Arnie Heller

Key Words: Amplab, amplifier, Beamlet, beamline, deformable mirror, flashlamp, fusion, laser, National Ignition Facility (NIF), Nova, Pockels cell, power conditioning, pulsed power.

For further information contact Howard T. Powell (925) 422-6149 (powell4@llnl.gov) or Richard H. Sawicki (925) 423-0963 (sawicki1@llnl.gov).

About the Scientist and Engineer

HOWARD T. POWELL is the program leader for Laser Science and Technology in Livermore’s Laser Programs Directorate, where he leads development activities in lasers for inertial confinement fusion and for advanced high-average-power, diode-pumped, and ultrashort-pulse lasers. Powell received his Ph.D. in applied physics from Cornell University in 1971 and his B.S. in physics from California Institute of Technology in 1966. Before coming to Livermore in 1973, Powell worked for McDonnell Douglas Research Laboratories. Powell has worked and published extensively on the development of laser and optics technologies: excimer lasers, solid-state lasers, precision laser control, laser-beam smoothing, and petawatt laser for Nova; and the large amplifier, flashlamp, and optics technologies for the National Ignition Facility.

RICHARD H. SAWICKI, associate project engineer for NIF special equipment, has supported NIF development since joining the Laser Systems Engineering Division in 1983. His duties include having responsibility for the precision laser and target-system hardware. Since joining the NIF project in 1994, he has been involved with planning the conceptual design and technology development. Prior to those assignments, Sawicki had responsibility for R&D and production planning for the dye laser and uranium separator systems in the Atomic Vapor Laser Isotope Separation project and evaluated the dynamic structural response of various weapon and target systems in the Nuclear Test Engineering Division. Prior to joining the Laboratory in 1980, Sawicki worked on design and thermostructural analyses for high-technology systems in the aerospace industry. He received his B.S. in engineering from Dartmouth University in 1971 and his M.S. in machine design from the University of California, Los Angeles, in 1974.
The 1997 climate conference in Kyoto, Japan, was a milestone, not a culmination of climate science. Now, knowledge of the global climate system must be further developed to enable policies and mitigation measures for global warming. Carbon cycle modeling is one route to that knowledge.

As scientific debate continues over the causes, mechanisms, and extent of global warming, the nations of the world have begun acting on the plausible assumption that human activities, particularly the release of significant amounts of greenhouse gases into the atmosphere, are leading to global warming. While not conclusive, evidence has been mounting that human-induced climate change is occurring. At the Kyoto climate conference in December 1997, policymakers, climate experts, and industrial leaders came together to seriously consider future global climate. Their goal: to negotiate limits on the future release into the atmosphere of carbon dioxide (CO$_2$). The ocean is a large “sink” for anthropogenic CO$_2$ released into the atmosphere by humans. Livermore modelers, having access to powerful, next-generation computers from the Department of Energy’s Accelerated Strategic Computing Initiative, are able to formulate models that represent ocean currents, eddies, and interactive processes with more fidelity than previously possible. Their most recent ocean models reflect the advance of climate simulation techniques and skills. The projects described here demonstrate the approaches that modelers use to test hypotheses about carbon cycle dynamics, understand process interactions, and refine representations of the future to derive accurate and useful models.

Improving Convection Models

The ocean is a large “sink” for anthropogenic CO$_2$. A model that can accurately simulate how the ocean absorbs anthropogenic CO$_2$ is prerequisite to predicting future atmospheric CO$_2$ concentrations and rates of global warming. But according to Livermore’s advanced supercomputers cannot provide that resolution—so modelers must select the most important climatic factors and influences and represent them as well as possible. The goal of the carbon cycle models is to predict the future behavior of carbon in the climate system. The models are tested by “hindcasting” the behavior of the carbon cycle from the historical past to the present. If model simulations match past records and observations, then model calculations predicting the future will merit confidence.

The Ocean Carbon Cycle

Livermore modelers have been formulating and testing a suite of models to reproduce carbon absorption, transport, and storage processes. The models cannot possibly incorporate all climate factors everywhere—even Livermore’s advanced supercomputers cannot provide that resolution—so modelers must select the most important climatic factors and influences and represent them as well as possible. The goal of the carbon cycle models is to predict the future behavior of carbon in the climate system. The models are tested by “hindcasting” the behavior of the carbon cycle from the historical past to the present. If model simulations match past records and observations, then model calculations predicting the future will merit confidence.
Caldeira has a project under way to investigate some of these processes and clarify some of the uncertainties surrounding ocean and marine-biology interactions. When sea ice is forming, it expels salt into surrounding surface water, making it saltier; denser water triggers convection, sinking the surface water and CO₂ it contains into the depths of the ocean. Surface ocean concentrations of CO₂ are thus reduced, and more CO₂ transfers from the air to the sea.

In the real ocean, convection occurs in horizontal regions that are meters or hundreds of meters across. Because ocean models cannot accurately represent such small features, some significant inaccuracies can arise in their simulations. Duffy and Caldeira thought that the modeled transfer of CO₂ from air to sea was probably too great because the models simulated excessive convection. If the instabilities resulting from expelled salt were treated more carefully, model results might better represent reality.

The two modelers tested their hypothesis by performing a pair of simulations that compared the standard treatment of convection to a “test” simulation in which the model’s convection mechanism was partially suppressed. In the standard “control” simulation, salt released during sea-ice formation is placed in the model’s top layer (which is 25 meters thick), and the model’s convection mechanism mixes it into the rest of the ocean. Because the convection mechanism is clumsy, excessive convection occurs. This in turn causes excessive ocean absorption of carbon.

In their test simulation, Duffy and Caldeira dispersed expelled salt uniformly over a broader area—from the surface down to a depth of 160 meters—and suppressed the model’s convection mechanism (Figure 1). This simulation produced much more realistic results for simulated convection, salinity, circulation, and absorption of chlorofluorocarbons (CFCs).

Then CFC uptake was simulated as an indirect test of the model’s ability to simulate ocean uptake of anthropogenic CO₂. No direct method is possible because anthropogenic CO₂ cannot be reliably distinguished from natural CO₂ in the ocean. By contrast, CFCs have no natural background concentration in the ocean. Moreover, CFC uptake is very closely related to the ocean’s absorption of human-induced CO₂, as Figure 2 shows.

Because of this close relationship, Caldeira and Duffy reasoned that the standard model treatment of ice formation, which results in excessive simulated ocean uptake of CFCs, also produces excessive uptake of anthropogenic CO₂. In addition, the improved treatment of ice formation, which produces greatly improved simulated uptake of CFCs, should also produce more accurate calculations of the uptake of anthropogenic CO₂. Further simulations are planned to verify these results.

Modeling Marine-Biology Effects

Marine biological processes play a large role in ocean carbon cycle dynamics, but they have been incorporated only recently into climate models. The inherent difficulties of mathematically describing their spatial and temporal effects have been a challenge. As a result of inadequate modeling of these processes, climate scientists have not been able to study the influences of marine biology and feedback responses to them. They have not known how the processes would affect the ocean carbon cycle.

Caldeira has a project under way to investigate some of these processes and clarify some of the uncertainties surrounding ocean and marine-biology interactions. He is using recently collected remote sensing and satellite data to model the interplay between sunlight, plankton (barely moving plant and animal aquatic organisms), and the ocean’s absorption of CO₂.

Earlier models have established connections among solar radiation, plankton, and ocean circulation dynamics. With newly available data, Caldeira is studying these interlinkings further, considering feedback interactions in the process. For example, when sunlight penetrates the ocean layers and heats the deeper waters, convective mixing results and causes two other effects. First, CO₂ in the surface waters downwells and must be replaced by CO₂ transferred from the air to the sea; second, nutrients from the depths well up to the surface. Additional nutrients increase plankton growth. In time, the increased volume of plankton blocks solar penetration, so the sunlight heats only the surface waters. This inhibits CO₂ downwelling, nutrient transport to the surface, and plankton growth. Does the ocean then return to its steady state, or does the cycle continue through other ecosystem dynamics? And what is the cumulative effect on the ocean’s absorption of CO₂?

Caldeira’s study will systematically simulate the interactions among solar radiation, plankton, and ocean dynamics; the feedback resulting from those interactions; and the impacts of the feedback on the predicted response of the ocean carbon cycle to climate change. The simulations will replicate the time frame from the preindustrial ocean carbon cycle (before 1765) to the present. The simulations will also calculate future atmospheric CO₂ content based on several emission scenarios that may result when CO₂ stabilization policies are implemented.

CO₂ by Radiocarbon Proxy

Radiocarbon, or 14C, has provided much of our knowledge about the rates of carbon exchange from the atmosphere to the oceans and land, and it yields...
British Columbia salmon scales

Carbon-Cycle Modeling

important information about the ocean circulation. The radioactive half-life (5,730 years) of ^{14}C is comparable to the time span taken by surface ocean water to circulate to the ocean bottom and back. This means that the spatial distribution of ^{14}C in the water yields significant knowledge about ocean circulation—water that has not been near the surface recently has significantly lower ^{14}C concentrations because of radioactive decay.

For climate modelers, data on ^{14}C distributions took on additional usefulness as a result of the atmospheric nuclear tests conducted mostly in the period from 1954 through 1963. The concentration of ^{14}C in atmospheric CO_2, which had remained fairly constant for the previous thousand years, was doubled by those nuclear tests in less than 10 years. Since the end of the tests, ^{14}C concentrations have been decreasing as atmospheric CO_2 moves into other carbon reservoirs. This infiltration of nuclear-testing ^{14}C into the carbon reservoirs can provide valuable information on carbon exchange. In particular, if the rate of nuclear-testing ^{14}C transfer from the atmosphere to the oceans and land could be accurately predicted, climate scientists would be able to predict the rate at which the oceans and land absorb human-induced CO_2 because essentially the same physical rules govern the transfer processes. Thus, understanding ^{14}C transfer is another route to determining rates of future greenhouse warming.

Models to simulate this transfer process make use of the estimated amounts of ^{14}C created by nuclear tests; they also make use of nuclear-testing ^{14}C data that were actually measured in the troposphere and stratosphere. If the models are accurate, the total amount of nuclear-testing ^{14}C transferred to the oceans, land, troposphere, and stratosphere should equal the estimated inventory of nuclear-testing ^{14}C, and the amounts transferred to the troposphere and stratosphere should approximate the measured data.

Early models simulating this transfer matched observed data only in part. In 1995, Duffy, five collaborators from Lawrence Livermore, and one from the University of Illinois tackled the problem of transfer. They used different and relatively more sophisticated multidimensional models of the ocean, land, stratosphere, and troposphere which they ran using observed data on tropospheric concentrations of ^{14}C as the model boundary conditions. Their simulations, for the period from 1955 through 1990 (Figure 3) are well within previously recognized uncertainties. This exercise proved that contemporary models can accurately account for all the bomb-produced ^{14}C in the climate system.

Radiocarbon by Salmon Proxy

To validate models of how the ocean absorbs nuclear-testing ^{14}C, modelers must be able to distinguish between how much of the total ^{14}C in the ocean is bomb-produced and how much is natural. The models therefore need to know if the natural ^{14}C concentrations before the weapons tests and how quickly the ^{14}C entered the oceans. The problem is that few open-ocean measurements of that period have been taken.

In Tom Brown of Livermore’s Center for Accelerator Mass Spectrometry, working with the Livermore ocean modelers and ocean and fishery scientists from the University of Washington, came up with a way to provide the “pre-bomb” ^{14}C data. In 1997, they measured the ^{14}C content of archived salmon scales using Livermore’s accelerator mass spectrometry capability (see S&T, November 1997, pp. 4-11), which can measure minute isotopic quantities with high precision. The salmon-scale measurements are proxy indicators for the ocean, land biosphere, and stratosphere, and even the ^{14}C to ^{12}C ratios, of the surface waters of the oceans during the time period the salmon dwelled in the waters.

Fishery scientists have been collecting and archiving salmon scales for nearly a hundred years for various research purposes. The scales are particularly suitable for determining time-history data of ocean waters because the salmon’s seasonal migration patterns are known. And because salmon live and feed on plankton and small fishes in the uppermost surface waters of the ocean, the scales can be equilibrated with the ^{14}C content of the surface waters. Furthermore, the sections of the scales that grow while salmon live in the open ocean are identifiable—they appear as bands of different thickness roughly corresponding to seasons (Figure 4). By selecting and measuring appropriate sections of the scales, Brown obtained estimates of ^{14}C content of North Pacific surface waters, averaged over the very large areas of the salmon’s seasonal migration patterns and over the 1- to 2-year time spans represented by the sections. The ^{14}C measurements show excellent agreement with the few direct, open-ocean measurements available of ^{14}C content from the atmospheric nuclear tests (Figure 5). By providing rare estimates of “prebomb” values and the initial increase of ocean ^{14}C, Brown’s measurements are a valuable help to climate scientists trying to predict future uptake of CO_2 by the ocean as well as future climate.

Fossil Fuel Affects ^{14}C Fluxes

Burning fossil fuel may appear to have no effect on atmospheric radiocarbon content because fossil fuel contains no ^{14}C. However, global processes are rarely that simple or linear. Caldeira and Duffy collaborated with Greg Rau from the University of California at Santa Cruz to formulate a model to quantify radiocarbon fluxes. Their model predicted significant, though indirect, effects of fossil-fuel burning on global distributions of ^{14}C. More important, if its prediction of increased ^{14}C levels by 1998 is correct, this model will soon become a test for global carbon-cycle models.

The model’s calculations of changes induced by land clearing, fossil-fuel burning, and atmospheric nuclear tests show that, in the very near future, ^{14}C in the atmosphere will begin to increase. Even though ^{14}C, which increased between 1954 and 1963, has been steadily declining, that decline will be reversed if humans do not change their habits in burning fossil fuel.

Caldeira, Duffy, and Rau used a simplified model of the atmosphere, land, and ocean. The model—driven by carbon fluxes from land clearing, fossil-fuel burning, and atmospheric nuclear tests—was used to simulate changes that would occur in the face of isotope decay, continuing CO_2 emissions, radiocarbon exchanges into the oceans and atmosphere, and estimates of future biomass. Nuclear test radiocarbon inventory in 1975, as well as data on both natural and bomb radiocarbon collected through GEOSECS (Geochemical Ocean Sections Study), an ocean data collection...
Simulation were performed to separately assess the changes caused by (1) land clearing and fossil-fuel burning, (2) land clearing only, (3) fossil-fuel burning only, and (4) both plus observed atmospheric data until 1990, which includes nuclear-testing 14C levels. The last simulation indicates the model’s ability to portray past trends and predict future 14C fluxes.

The simulations indicate what percentages of increases in atmospheric CO2 can be attributed to deforestation and fossil-fuel burning. The data indicate that, prior to about 1910, most of the carbon being added to the ocean resulted from deforestation; since that date, the carbon flux has been dominated by the effects of fossil-fuel burning. The modelers’ interpretation of the trends led them to the unexpected prediction that 14C levels in the atmosphere will begin to increase as a result of fossil-fuel burning. The modelers explain it this way: When atmospheric CO2 content increases, the ocean’s absorption of it increases. In the case of fossil-fuel-caused increases, because fossil fuel contains no radiocarbon, the ocean is absorbing CO2 that consists primarily of 14C, a weak acid. A more acidic ocean tends to reject carbon in all its isotopic forms. So the 14C component of ocean CO2 is rejected along with the other carbon isotopes, adding to the atmospheric 14C content and reversing the decline that began in the 1960s after the end of atmospheric testing. The model indicates that 14C levels will begin increasing as early as 1998 and, by 2015, the fossil-fuel-induced radiocarbon flux out of the ocean will exceed the nuclear-explosion radiocarbon flux into the ocean, so the ocean’s 14C mass will then begin to diminish.

The Caldeira, Duffy, and Rau model is noteworthy because the prediction that the 14C flux into the ocean will be reversed early in the next century indicates that human impacts on the global carbon cycle are significant on geologic, not just human, time scales.

Closing In on Global Climate

The growing consensus that fossil-fuel use is causing climate change and the recent effort to formulate international treaties to limit greenhouse-gas emissions lend urgency to understanding how carbon moves within the climate system. It indeed humans have been responsible for changing the climate, climate models must accurately and conclusively portray this cause and effect. Then we will have the understanding needed to begin mitigating the effects and assuring a better future for the environment.

--- Gloria Wilt

Key Words: carbon cycle, carbon dioxide, climate change, climate model, fossil-fuel burning, global warming, greenhouse gas, marine biology, mass spectrometry, ocean carbon cycle, ocean convection, proxy data, radiocarbon (14C).

About the Scientists

PHILIP B. DUFFY is a physicist at the laboratory, where he is group leader for the Climate System Modeling Group in the Atmospheric Sciences Division. Duffy worked in strategic defense systems when he joined the Laboratory in 1986. Prior to that, he received his Ph.D. and M.S. in astrophysics in 1986 and 1981 from Stanford University and an A.B. in astronomy and astrophysics in 1979 from Harvard University. Duffy has published research on astronomy, atomic physics, and numerical modeling of ocean circulation.

KENNETH G. CALDEIRA joined the Laboratory’s Atmospheric Chemistry Group as a physicist in 1993 and has been an environmental scientist in the Climate System Modeling Group since 1985. He received his Ph.D. and M.S. in atmospheric science from New York University in 1991 and 1988 and his B.A. in philosophy from Rutgers University in 1978. He also served as a postdoc at Pennsylvania State University’s Earth System Science Center. Caldeira has published many papers, for example, on climate stability of early Earth and the global carbon cycle as it has been affected by human activity over millions of years.

Reliable Software for Protection Systems

A patient undergoing radiation therapy for cancer wants to be sure that the radiation being delivered is just the amount prescribed and no more. Nuclear power plants must have systems installed to ensure that radiation leaks and accidents do not occur. Today, controlling these protection systems flawlessly depends upon computer software, which occasionally contains unforeseen “bugs.” Software bugs on your computer at home are annoying, but at a nuclear power plant or during radiation therapy they can be life-threatening.

At Lawrence Livermore, Gary Johnson’s Computer Safety and Reliability Group—part of the Fission Energy and Systems Safety Program—has been working with the Nuclear Regulatory Commission for several years to avoid software problems in safety systems at nuclear power plants. Livermore brings to this job decades of systems engineering experience as well as a regulatory perspective from years of working with the NRC and other regulating agencies.

Johnson’s group and the NRC developed software and computer system design guidance that the NRC uses to evaluate the design of safety-critical systems for U.S. plant retrofits. Overseas, where new nuclear power plants are being built, regulators and designers are using this state-of-the-art guidance to help assure plant safety. For the last few years, representatives from Hungary, the Czech Republic, Ukraine, Korea, Taiwan, and Japan have been calling upon Johnson and his group for assistance in setting criteria for their nuclear power plant control systems. This software design guidance is also applicable to other computer-controlled systems that could endanger human life if they are poorly designed—medical radiation machines, aircraft flight control systems, and railroad signals, for example.

When Software Fails

Perhaps the best-documented example of the harm resulting from poorly designed software involved the Therac-25, an accelerator used in medical radiation therapy. The IEEE Computer Applications in Power reported, “Between June 1985 and January 1987, six known accidents involved massive overdoses by the Therac-25—with resultant deaths and serious injuries” at treatment centers around the U.S. and in Canada. Between the patient and the Therac-25’s radiation beam was a turntable that could position a window or an x-ray-mode target between the accelerator and patient, depending on which of two modes of operation was being used. If the window was positioned in the beam’s path with the machine set to deliver radiation through the x-ray-mode target, disaster could result because software errors allowed the machine to operate in this configuration.

Engineering Reliable Software

Conditions such as these, where software was assigned sole responsibility for safety systems and where a single software error or software-engineering error could have catastrophic results, are precisely what Johnson’s group aimed to avoid when it helped to prepare the portion of the NRC’s recently published Standard Review Plume regarding computer-based safety systems. Their process requires that software for nuclear power plant protection systems be written in accordance with good engineering practices. That is, software should follow a step-by-step approach of planning, defining requirements for worst-case scenarios, designing the software, and following a detailed inspection and testing program—

Figure 1. Data from IBM’s Federal Systems Division indicate that when more effort is spent up front for inspection, verification, and validation, the product error rate decreases.

Science & Technology Review March 1998
known as verification and validation—during each step of development and installation. This process avoids the pitfalls that can occur when software designers are expected to begin writing code before the design is complete, a process akin to pouring concrete footings for a building before knowing how tall the building will be.

Good engineering practices make for better software. But it is axiomatic in the safety-systems business that software can never be perfect. Figure 1, showing IBM’s experience from the Space Shuttle program, illustrates the futility of attempting to produce perfect software for every need. The point of diminishing returns is reached well before perfection can be guaranteed.

When the consequences of failure are very high, safety-critical systems should always incorporate “defense-in-depth and diversity,” which can be accomplished by incorporating different kinds of hardware, different design approaches, or different software programming languages. The idea is to have different kinds of systems available to accomplish the same goal; for example, a digital system is often backed up with a tried-and-true analog system. Then, if one system fails, a different system is in place to carry on. Simple redundancy, having two versions of the same system, is not enough because both could fail simultaneously as a result of the same flaw (Figure 2).

Many kinds of diversity are possible. Although only some scientific basis dictates what kinds of diversity are the best or how much diversity is enough, experience has shown an effective combination of protections to be the use of different hardware and software acting on different measurements to initiate different protective actions. Based on that experience, the NRC’s Standard Review Plan requires that at least two independent systems, incorporating multiple types of diversity, protect against each worst-case scenario.

Making the Systems Better

The Institute of Electrical and Electronics Engineers has defined good engineering processes for the design of computer software, but there is little agreement on such specifics as notation, the preparation of specifications, or design and analysis methods. Testing is another challenge. As yet, although methodologies are available, there are no mathematical equations or models that can be used to evaluate a software program to determine whether it is dependable or whether it contains errors and may fail.

Johnson’s group has three projects under way that tackle the software quality issue head on—developing a method for determining the reliability of high-integrity safety systems, developing techniques to test commercial software, and developing methods for establishing the requirements to which software is written.

The first project is related to the current move toward “risk-based regulation,” which uses assessments of risk to determine how to regulate. Livermore is developing a methodology to form a measure of overall system reliability. The result will be used in NRC probabilistic risk assessment analyses.

In the second project, the group is looking for ways to “qualify” software that has not been through a rigorous development process, such as software that is frequently embedded in systems. If this project is successful, the process of introducing new control systems into nuclear power plants will be simplified.

The aim of the third project is to clarify the project goals, or requirements, that are developed before software programs for protection systems are written. Requirements must be carefully specified, but it is almost impossible to anticipate every situation. Livermore engineers are working with Sandia National Laboratories, Albuquerque, to adapt techniques used to design control systems for the defense industry. In the process, they are developing methods for determining the fundamental goals of a computerized control system.

As computers become more powerful and software more complex, projects such as these will go far to increase confidence in the reliability of systems designed to protect workers and the public.

– Katie Walter

Key Words: instrumentation and control systems, nuclear power plants, safety-critical systems, software engineering.

References

For further information contact
Gary J. Johnson (925) 423-8834 (johnson27@llnl.gov).
Publications from Livermore’s Computer Safety and Reliability Center are available at http://nssc.llnl.gov/FRPP/CRRC/html/.
Keeping the “More” in Moore’s Law

The number of transistors that can be put on a computer chip tends to double about every two years, just as Intel Corp.’s co-founder Gordon Moore predicted more than 20 years ago. But lately, experts have been worried that Mr. Moore’s law might falter as the laws of physics catch up with the ability to cram more and more on a chip. That’s why Lawrence Livermore—with its skills in optics, precision machining, multilayer coatings, miniaturization, and a host of other capabilities developed in its weapons work—teamed up with fellow DOE laboratories Lawrence Berkeley and Sandia to literally shed new light on the subject. They also teamed up with three of the biggest names in the semiconductor industry—Intel, Motorola, and Advanced Micro Devices. The result is a $250-million project, funded by corporate money, to continue developing extreme ultraviolet (EUV) lithography technology.

The team’s strategy has been to focus on specific technologies for EUV lithography, including multilayer coatings, projection optics, optical substrates, mask and optical design, and metrology (Figure 1). Livermore brings expertise in optics, precision engineering, and multilayer coatings; Sandia’s part includes the systems engineering, the resists (protective coatings that prevent unwanted etching), and the light source. Berkeley provides its Advanced Light Source to characterize the optics and resists in the EUV range.

Traditionally, advances in optical lithography—a photography-like technique of using light to carve channels on silicon wafers—have relied on using shorter and shorter wavelengths of light, which can produce smaller features much as a razor can make a finer cut than a hacksaw. State-of-the-art techniques use ultraviolet (UV) light, and experts believe that chips will continue to follow Moore’s law for another 10 years as even shorter wavelengths are used. Current systems use UV light with a wavelength of 0.248 micrometer, to image a master pattern through lenses onto a silicon wafer that is covered by a resist. This technology can produce features of just 0.05 micrometer, or about one-fourth the width of a human hair.

In less than 10 years, engineers plan to build chips with features measuring about 0.13 micrometer by using wavelengths of 0.193 micrometer. But beyond that point, physics intervenes and light shorter than that—called extreme ultraviolet light—will be absorbed, rather than refracted, by a conventional quartz lens. The result: no image.

Enter Multilayer Coatings

To solve the absorption problem associated with lenses, Livermore researchers turned to mirrors that reflect and focus the light on the chip. Called extreme ultraviolet lithography, the technique bounces EUV photons off an elaborate setup of mirrors, including a mask made of reflective materials, that ultimately focuses the photons on a resist-coated silicon wafer. By doing so, the Laboratory and its partners have designed an EUV system that can pattern features smaller than 0.05 micrometer.

But this method is not without its own technical challenges. The typical EUV mirror made with coatings of alternating films of silicon and molybdenum can reflect only about 65% of the photons that hit them. Because the photons in the EUV system are reflected nine times before they hit the wafer, the losses mount until only 1 to 2% of the original photons hit the target, which makes for long, costly exposure times. To make the system cost-effective, researchers must boost the reflectivity of the mirrors to at least 72%.

However, Don Sweeney, the acting program leader for Advanced Microtechnology, says he thinks that goal can be reached in a few years. “Our researchers have already had some success in making higher-reflectivity mirrors from new combinations of materials.”

Boosting EUV Lithography

Another important advance that assists the EUV lithography work is the development of the Ultra Clean Ion Beam Sputter Deposition System, the result of a collaboration between Lawrence Livermore and Veeco Instruments Inc. of Plainview, New York. That work earned an R&D 100 Award for the team in 1997 (see S&T/R, October 1997, pp. 8–9).

The conventional method for making the reflective masks for EUV lithography is called magnetron sputtering. But the defect rate for the process is about 10,000 defects per square centimeter, far too many for successful EUV lithography. The new process, embodied in Veeco’s IBSD-350, produces precise, uniform, highly reflective masks with 81 alternating layers of materials. The IBSD-350 uses a mirror array instead of a single mirror, so, the Laboratory and its partners have designed an EUV system that can pattern features smaller than 0.05 micrometer.

The incredible Shrinking Chip

Why are smaller computer chips better and faster? It might seem a paradox, but as the size decreases, the chips become more powerful. It’s as simple as getting to grandma’s house faster if she lives next door rather than across town: the electronic signals zipping around the circuitry to solve computing problems have less distance to travel. Today’s chip contains about 3,200 times more transistors than the chip of 1971. Here’s a chronology of the shrinking of chips as the semiconductor industry became a $150-billion enterprise.

<table>
<thead>
<tr>
<th>Year</th>
<th>Microprocessor</th>
<th>Number of Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>4004</td>
<td>2,300</td>
</tr>
<tr>
<td>1974</td>
<td>8080</td>
<td>6,000</td>
</tr>
<tr>
<td>1978</td>
<td>8086</td>
<td>29,000</td>
</tr>
<tr>
<td>1982</td>
<td>80286</td>
<td>134,000</td>
</tr>
<tr>
<td>1985</td>
<td>Intel 386</td>
<td>275,000</td>
</tr>
<tr>
<td>1989</td>
<td>Intel 486</td>
<td>1.2 million</td>
</tr>
<tr>
<td>1993</td>
<td>Pentium Processor</td>
<td>3.5 million</td>
</tr>
<tr>
<td>1995</td>
<td>Pentium Pro</td>
<td>5.5 million</td>
</tr>
<tr>
<td>1997</td>
<td>Pentium II</td>
<td>7.5 million</td>
</tr>
</tbody>
</table>
A thermoacoustic device having a thermal stack made from a piece of porous material, which provides a desirable ratio of thermoacoustic area to viscous area. The material has a low resistance to flow to minimize acoustic streaming, high specific heat conductivity, and low thermal conductivity. The inexpensive thermoacoustic stack can be formed of recycled aluminized carbon and is easily formed in small sizes. A heat exchanger of heat-conductive, open-cell foam may be included. The thermoacoustic cooling device may be combined with a semiconductor device.

Each month in this space we report on the patents issued to and/or the awards received by Laboratory employees. Our goal is to showcase the distinguished scientific and technical achievements of our employees as well as to indicate the scale and scope of the work done at the Laboratory.

Patents

<table>
<thead>
<tr>
<th>Patent issued to</th>
<th>Patent title, number, and date of issue</th>
<th>Summary of disclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>William C. Moss</td>
<td>Thermoacoustic Refrigerator U.S. Patent 5,673,561 October 7, 1997</td>
<td>A thermoacoustic device having a thermal stack made from a piece of porous material, which provides a desirable ratio of thermoacoustic area to viscous area. The material has a low resistance to flow to minimize acoustic streaming, high specific heat conductivity, and low thermal conductivity. The inexpensive thermoacoustic stack can be formed of recycled aluminized carbon and is easily formed in small sizes. A heat exchanger of heat-conductive, open-cell foam may be included. The thermoacoustic cooling device may be combined with a semiconductor device.</td>
</tr>
</tbody>
</table>

Awards

Richard W. (Dick) Lee and Max Tabak have been elected Fellows of the American Physical Society for their outstanding contributions to physics. Among the 179 fellows elected in 1997, they are both members of the society’s Plasma Physics Division. Lee, a senior scientist in the Physics and Space Technology Directorate office, was recognized “for technical contributions, and outstanding outreach of codes for plasma spectroscopy.” A physicist and group leader for inertial confinement fusion in the Defense and Nuclear Environmental Directorate, Tabak was cited for his exceptional inventive and broad contributions to the fields of laser and particle-driven inertial fusion, and in particular for being the principal inventor of the fast ignition concept.

IndustryWeek magazine selected Charles Alcock as one of the nation’s top 50 R&D “stars” for his research on dark matter, known as MACODS (Massive Compact Halo Objects).

Kennedy Reed, named the winner of the International Science & Technology Review March 1998

Science & Technology Review March 1998

Science & Technology Review March 1998
Keeping Laser Development on Target for the National Ignition Facility

The National Ignition Facility (NIF) will be the world’s largest laser when it is completed in 2003. The 192-beam facility, costing $1.2 billion, is Lawrence Livermore’s largest construction project and permanent facility in its history. The goal is to achieve fusion energy break-even and gain for the first time in a laboratory while focusing on substantial cost savings on all parts of component design, placement, and use. This article discusses the progress of many of the laser technologies that combine to make the NIF laser feasible, including the optical pulse generation system, preamplifier modules, main amplifier modules, flashlamps, power conditioning system, Pockels cells, and deformable mirrors. Also discussed are the contributions of the Beamlet and Amplab experimental facilities.

Contact:
Howard T. Powell (925) 422-6149 (powell4@llnl.gov) or Richard H. Sawicki (925) 423-0963 (sawicki1@llnl.gov).

Tracing the Role of Carbon Dioxide in Global Warming

One important area of work for Lawrence Livermore’s Earth and Environmental Sciences Directorate is investigating the carbon cycle. Much of the carbon in our environment exists in the atmosphere in the form of carbon dioxide, the most important greenhouse gas. By tracking carbon as it exchanges from the atmosphere to the terrestrial ecosystem and the oceans, climate scientists are attempting to understand how increased emissions of carbon, as a result of human activities, can perturb global climate. The Climate System Modeling Group, in collaboration with other Laboratory disciplines, investigates better mathematical approximations of physical processes; experiments with different applications of data sets such as past records, collected observations, and proxy indicators for climate-related events; and tests hypotheses on physical and biogeochemical processes.

Contact:
Philip B. Duffy (925) 422-3722 (duffy2@llnl.gov) or Kenneth G. Caldeira (925) 423-4191 (kenc@llnl.gov).