
10 Lawrence Livermore National Laboratory

HIGH-PERFORMANCE
 computing (HPC) centers, such as

Lawrence Livermore’s, routinely deploy
large-scale scientific software applications.
These applications rely on tens to hundreds
of external programs, known as packages,
that enable the computer’s operating
system to execute specific functions and
perform as needed. Packages include
software versions tailored specifically for
users’ machines as well as dependencies
and configurations customized for
their applications. Even for seasoned
professionals, manually downloading,
installing, building, and resolving conflicts
among all of these programs is onerous,
and this time-consuming process is a
substantial barrier to scientists.

Spack, a 2019 R&D 100 Award–
winning software technology, was created
to alleviate the package managment
burden. “The inefficiency and complexity
of building software for HPC machines can
detract from scientific research,” explains
Livermore computer scientist and Spack
principal investigator Todd Gamblin.
“Spack’s automated package management
eliminates much of the grunt work.”

Codeveloped by a dozen other universities,
national laboratories, institutes, and
computing centers, Spack also won a silver
medal in the R&D 100 Awards’ Market
Disruptor category.

Gamblin notes that other package
managers can only be run by
administrators and other privileged users
and do not handle simultaneous custom
installations of multiple software versions
and configurations. Fortunately, Spack is
designed for these scenarios and can be
used by nonprogrammers, developers, and
system administrators alike. Users need
only download the Spack tool and learn its
specification syntax.

Complexity Behind the Scenes
Installing and using software

dependencies is a careful balancing
act as new packages are integrated
into an application and each addition
increases the complexity of the task.
Spack speeds up installation by

assembling all the packages needed for
an application’s deployment, managing
their configurations, and optimizing the
build for the user’s machine. The user
views and queries Spack’s list of available
packages, then Spack automatically
downloads and builds source code for
the desired packages’ dependencies.
Users can assemble hundreds of software
libraries in minutes, giving them more
time to focus on their scientific research.

Spack’s recipes—steps for building
a package—are written in the widely
used Python programming language.
On top of Python, Spack provides its
own domain-specific language that
enables contributors to write templated
instructions, so a single recipe file
can be used to build many different
configurations. (Other package managers
can require thousands of duplicate files
to accomplish the same task.) To build
a configuration, Spack offers a custom
specification language for selecting

Development team for Spack: (from left) Greg Lee, Matt Legendre, Todd Gamblin, Peter Scheibel,
Greg Becker, and Tamara Dahlgren. (Photo by James Chalabi.)

Software
Installation
Simplified

11Lawrence Livermore National Laboratory

S&TR July 2020

options, versions, and compilers.
Gamblin states, “Together, Spack’s
package recipes and specification syntax
allow users to tailor their software
stack for specific codes and computing
environments.”

Spack’s concretization algorithm is
responsible for converting the user’s
abstract requirements into concrete,
buildable specifications. The process
effectively fills in the blanks of software
configuration. The user provides a
partially completed form, and the
algorithm finds a configuration that
satisfies the user’s requirements as well as
each package’s unique compatibility rules.
The algorithm produces an output file of
the resulting configuration data, allowing
users to easily reproduce a software stack
for a particular scenario.

Perhaps Spack’s most impressive
feature is its repository of thousands
of templated packages supporting diverse
computing platforms (including laptops),
simulation frameworks, programming
languages, and other options. Gamblin
explains, “A user’s software integration
burden increases with every new
library or update, but Spack manages
the growing complexity and allows
users to build quickly on a variety of
computing systems.”

Worldwide Impact
Spack’s features and flexibility have

led to its adoption by many prominent
coding teams, supercomputing centers,
and software development communities
at Livermore and beyond. For example,
Oak Ridge National Laboratory uses
Spack to deploy more than 1,300 software
packages on the top-ranked Summit
supercomputer. This installation process
previously required two weeks of work
and can now be deployed overnight.
Spack is also used at Los Alamos National
Laboratory, Fermi National Accelerator
Laboratory, CERN (the European
Organization for Nuclear Research), and
the Japanese research center RIKEN.

The Spack team regularly offers tutorials
and workshops at major supercomputing
conferences and visits HPC centers to learn
from and train development teams. Spack
is used for software deployment on 6 of the
world’s top 10 supercomputers and has been
adopted as the standard deployment tool of
the Exascale Computing Project (ECP)—a
Department of Energy collaboration tasked
with building a reliable software stack for
future exascale-class machines. According
to ECP deputy director Lori Diachin,
“Spack is an integral part of the ECP’s
ecosystem because our software stack is
quite large and complex.”

Spack is open-source software, which
means its functionality can expand and
its features can mature thanks, in part,
to the software community beyond the
Laboratory. (See also the article on p. 8 of
this issue; S&TR, January/February 2018,
pp. 4–11.) Spack has more than
500 contributors and 2,000 monthly active
users around the globe—and the numbers
are growing.“Learning about use cases at

research institutions and other HPC
centers has helped us make Spack what
it is today,” says Gamblin. “Open-source
development benefits those who use and
contribute to Spack.”

Next-generation HPC architectures,
with diverse graphics processing units
and accelerators, will only increase the
complexity of scientific applications and
the necessary software dependencies. As
the bar is raised, Gamblin expects Spack to
become smarter and more automated. He
states, “We are always expanding Spack’s
capabilities to adapt to new technologies
and user needs.”

—Holly Auten

Key Words: compiler, concretization
algorithm, Exascale Computing Project (ECP),
high-performance computing (HPC), open-
source software, package, package manager,
R&D 100 Award, software installation, software
stack, Spack.

For further information contact Todd Gamblin
(925) 422-9319 (gamblin2@llnl.gov).

Spack

A typical multiphysics code used at Lawrence Livermore requires installation of hundreds
of software packages and dependencies, as illustrated by this map of the “rminer” package.
Whereas manual installation of such complex software would be impossible, Spack’s
automation makes quick work of the task.

