
8 Lawrence Livermore National Laboratory

THE stakes are high when scientific 
applications run on high-performance 

computing (HPC) systems. Simulations 
of complex phenomena such as fusion 
energy and natural disasters require 
timely analysis to deliver effective 
solutions. “Checkpointing” techniques 
help protect against computing failures 
that slow performance by periodically 
saving application data as the simulation 
progresses. When a crash occurs, 
the application is restarted from the 
checkpointed file instead of from the 
beginning—analogous to the way a 
word-processing program autosaves and 
subsequently recovers a document. 

In traditional checkpointing, 
application data is saved to and retrieved 
from the computer’s long-term storage—
actions known as input/output (I/O) 
operations. The application waits during 
this potentially minutes-long process, 
unable to continue its computations. 
Researchers must regularly monitor their 
applications and manually intervene if 
failures occur to avoid costly slowdowns. 
“The time to reach a solution matters 
because scientists need to make time-
critical decisions,” explains Lawrence 

Livermore computer scientist Kathryn 
Mohror, who co-leads the development 
team behind the R&D 100 Award–
winning technology known as the Scalable 
Checkpoint/Restart (SCR) framework. 

Conceived in 2007 by Laboratory 
computer scientist Adam Moody when a 
large-scale simulation code failed repeatedly 
on the Atlas supercomputer, the SCR 
framework is a multilevel checkpointing 
system that alleviates the bandwidth 
bottleneck by caching checkpointed files 
in storage located close to the compute 
nodes. The framework leverages short-
term storage locations, accelerates I/O 
operations, and creates failure-resilient 
checkpoint and restart support. Mohror, 
who has co-led the project with Livermore 
computer scientist Elsa Gonsiorowski since 
Moody stepped down from the position in 
2019, says, “Simulations can be completed 
more quickly with a smarter checkpointing 
system like SCR.” 

Full Feature Set
On a supercomputer, checkpointed files 

are saved in a complex, hierarchical storage 
architecture. SCR manages the movement 
of checkpointed files through the storage 

hierarchy to achieve the best performance 
for the application. This process involves 
executing many complex tasks while the 
application runs—performing health checks 
of the computing environment, monitoring 
the application’s progress, managing I/O 
data, and transferring data—and exploits 
storage levels that are not shared across all 
of a supercomputer’s nodes. In addition, 
SCR saves only the checkpointed data 
needed at the time, not the entire system 
state. “In most cases, SCR can restore a 
checkpoint from short-term storage because 
most failures affect only a small part of the 
application at a time,” notes Mohror. SCR 
can also fall back to checkpoints in long-
term storage, if necessary.

SCR is further differentiated from 
other checkpointing tools by its I/O 
management techniques, including the 

Resiliency
in Computer 
Applications

Development team for Livermore’s Scalable 
Checkpoint/Restart (SCR) framework: (from 
left) Bronis de Supinski, Kathryn Mohror, Tony 
Hutter, Elsa Gonsiorowski, Greg Kosinovsky, 
Cameron Stanavige, and Adam Moody. (Not 
shown: Greg Becker and Kathleen Shoga.) 
(Photo by Randy Wong.)



9Lawrence Livermore National Laboratory

S&TR July 2020

types of output files it handles. Mohror 
explains, “With our latest software 
release, SCR manages more than 
checkpointed files to storage. Now, it also 
manages general files containing other 
simulation data.” SCR’s I/O mechanisms 
scale linearly with the number of compute 
nodes used by the application and are 
as much as 1,000 times faster than I/O 
operations that do not use SCR. This 
enhancement allows researchers to output 
higher resolution data more frequently 
from their application runs, leading to a 
better understanding of the results.

Moreover, SCR accommodates different 
types of HPC storage architectures and 
their resource management configurations. 
Mohror says, “For each storage device, 
system administrators can specify the 
device’s size, its failure characteristics, 
and how many checkpoints to store 
before deletion.” SCR’s checkpointing 

mechanisms “wrap” around the code, 
independent of the device or operating 
system. No two supercomputers are alike, 
and such software portability techniques 
are crucial for adapting Livermore’s codes 
to future exascale-class machines. 

From the user’s perspective, SCR 
offers a flexible application programming 
interface that easily integrates into an 
application’s existing I/O code. The user 
specifies a few parameters that tell the 
computer when, where, and how often 
to capture checkpoints. No other code 
modifications are needed. Ultimately, 
the user does not need to understand or 
manage the computer’s specific storage 
hierarchy and can instead focus on the 
scientific application.

Proof in Production Codes
Livermore’s pF3D code, used by the 

National Ignition Facility to simulate 
backscatter from laser light, was the first 
production code to use SCR. When a new 
supercomputer came online in 2007, Moody 
explains, “Each pF3D calculation needed 
days to complete, but the system failed 
every few hours. SCR saved and protected 
each checkpoint against system failures 
using data redundancy encodings.” SCR 
reduced pF3D’s checkpoint and restart 

time from more than 10 minutes to just 
seconds, allowing checkpointed files to be 
saved more frequently. Livermore physicist 
Denise Hinkel recalls, “I had been setting 
alarms to check the pF3D simulation 
periodically throughout the night, like it 
was a newborn baby. SCR’s automated 
checkpoints and restarts let me sleep again.”

SCR provides faster checkpointing, 
faster restarts, and portability across 
computing platforms. “We see orders of 
magnitude improvement in performance 
when using SCR, especially when running 
extremely large-scale applications,” 
states Mohror. Such improvement is 
especially important as existing codes are 
modified for next-generation machines. 
For example, SCR sped up pF3D’s 
checkpointing time by 48 times on 
Atlas and 19 times on an HPC system 
called Hera. 

After more than a decade supporting 
a variety of applications and computing 
systems, SCR continues to evolve. 
Mohror states, “We want SCR’s data 
management infrastructure to support 
even more complex workflows.” As 
open-source software, the framework’s 
influence can extend beyond the 
Laboratory. (See S&TR, January/
February 2018, pp. 4–11.) Located at the 
University of California at San Diego, 
the San Diego Supercomputer Center is 
an example of an academic partner using 
SCR on production HPC applications. 
The application is useful for industry as 
well. Moody notes, “Our solution has 
worked so well that we want more people 
to benefit from it.”

—Holly Auten

Key Words: application programming 
interface, Argonne National Laboratory, 
checkpointing, high-performance 
computing (HPC), input/output (I/O) operation, 
open-source software, pF3D code, R&D 100 
Award, Scalable Checkpoint/Restart (SCR) 
framework, scientific application, simulation.

For further information contact Kathryn 
Mohror (925) 423-2997 (mohror1@llnl.gov).

SCR Framework

SCR leverages short-term storage for checkpoint 
files, thus accelerating data retrieval and 
subsequent restarting of the application if 
a computing failure occurs. The white dots 
represent data input/output movement between 
storage tiers and the scientific application. 
(Rendering by Ryan Goldsberry.)




