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  The Laboratory in the News   Commentary by Bruce HendricksonS&TR March 2019

Petawatt Laser System Fully Integrated
The High-Repetition-Rate Advanced Petawatt Laser 

System (HAPLS) was recently declared to be fully operational 
at the European Union’s Extreme Light Infrastructure (ELI) 
Beamlines. Forming the facility’s third world-leading laser 
capability, HAPLS (see below) was developed and built by 
Lawrence Livermore to be the world’s most powerful diode-
pumped petawatt laser system. HAPLS has met the required 
performance parameters of being able to reach its 1-petawatt, 
10-hertz design specification and is ready for integration with 
experimental systems.

In 2013, conceptual work on HAPLS commenced at the 
Laboratory, where it was designed, developed, and constructed 
by the Advanced Photon Technologies Program. In 2016, 
a Livermore–European team completed construction and 
final testing at the Laboratory. In 2017, the laser system was 

disassembled and shipped to 
ELI in Dolní Břežany, Czech 
Republic, where it arrived in 
June of that year.

The system consists of 
a main petawatt beamline 
capable of delivering 
45 joules of energy per 
pulse, and is energized 
by diode-pumped lasers 
capable of delivering up to 
200 joules of energy per 
pulse. The laser has been 

commissioned for early experiments at its phase 1 operation point 
of 16 joules and a 26-femtosecond pulse duration at a 3.3-hertz 
repetition rate, equivalent to a peak power of approximately 
0.5 petawatts after the pulse compressor.

HAPLS represents a major advancement over any other 
petawatt-class laser system in the world and opens up a new 
arena of quantitative science, with the potential to develop 
societally impactful applications for industry and medicine.
Contact: Constantin Haefner (925) 422-1167 (haefner2@llnl.gov).

Understanding the Universe through Neutrinos
Livermore scientists are part of a team that proposed the next-

generation Enriched Xenon Observatory (nEXO) experiment for 
providing a two-orders-of-magnitude increase over current limits 
in sensitivity to neutrinoless double-beta decay (NDBD) half-life. 
Determining features of the neutrino by observing NDBD—an 
extremely rare nuclear process—could provide an explanation 
for the puzzling overabundance of matter over antimatter in 
the universe. Studying NDBD could also reveal physics that 
would confirm the existence of a new elementary particle, the 

Majorana fermion. This discovery could reshape the Standard 
Model of particle physics and lead to a better understanding of 
neutrinos and their role in the universe’s evolution. The design 
of the nEXO detector—a 5-ton liquid-xenon time-projection 
chamber using 90 percent enriched xenon-136—takes advantage 
of advanced technology for the next phase of NDBD research. 
The Laboratory research behind the experiment appears in the 
June 2018 issue of the journal Physical Review C.

“A competitive two-orders-of-magnitude increase in NDBD 
half-life sensitivity over current experiments is possible using the 
nEXO detector,” states Livermore scientist Samuele Sangiorgio, 
lead author of the team’s paper. “We now have great confidence 
in nEXO’s design and approach, and we could have a real 
chance at measuring this rare event.” Scientists expect to base 
discovery on observing only a dozen or so decays in a decade-
long experiment. This very low signal rate means false signals 
from background radiation and cosmic rays must be suppressed 
as much as is feasible—a goal that the new experiment design 
will help achieve.
Contact: Samuele Sangiorgio (925) 422-6439 (sangiorgio1@llnl.gov).

Hydrodynamic Instabilities Elucidated
Researchers at Lawrence Livermore and the University 

of Michigan reported on recent experiments and techniques 
designed to improve the understanding and control of 
hydrodynamic instabilities in high-energy-density (HED) 
settings, such as those that occur in inertial confinement fusion 
(ICF) implosions at the National Ignition Facility (NIF). In the 
June 2018 issue of Proceedings of the National Academy of 
Sciences, the team describes four areas of HED research that 
focus on Rayleigh–Taylor (RT) instabilities. This phenomenon 
arises when two fluids or plasmas of different densities are 
accelerated together, with the lower density fluid pushing and 
accelerating the higher density one. RT instabilities can degrade 
NIF implosion performance by amplifying target defects and 
causing perturbations through engineering features, such as the 
tents used to suspend the target capsule in the hohlraum and the 
fill tube that injects fusion fuel into the capsule.

The paper summarizes a wide range of studies about HED 
RT instabilities relevant not only to ICF but also astrophysics, 
planetary science, and hypervelocity impact dynamics.  
The researchers state that the studies, although aimed primarily 
at improving understanding of stabilization mechanisms in RT 
growth within NIF implosions, also offer unique opportunities to 
study other phenomena that typically can be found only in high-
energy astrophysics, astronomy, and planetary science, such as the 
interiors of planets and stars, the dynamics of planetary formation, 
supernovae, cosmic gamma-ray bursts and galactic mergers. 
Contact: Bruce Remington (925) 423-2712 (remington2@llnl.gov). 

LAWRENCE Livermore is a data-rich environment. As the 
  demand for sophisticated methods of analyzing and 

interpreting data grows, so too does the need to push the 
boundaries of data science—a field that goes beyond merely 
crunching numbers to exploiting sophisticated technologies such 
as machine learning (ML) to analyze data. Organizations all 
across the Laboratory apply data science techniques to scientific 
questions while also strengthening the field’s methodologies.  
The article beginning on p. 4 describes this dual pursuit in ML,  
in which computer algorithms learn from data to identify 
patterns, make inferences, and predict outcomes.

ML is a rapidly growing specialty, particularly in nearby 
Silicon Valley, California, where consumer needs propel 
technological developments. Around the world, major 
ML-focused conferences receive thousands of paper submissions, 
and the pace of scientific publishing is staggering. At the 
Laboratory, we contribute to this progress because ML has 
important implications for scientific data analysis and for our 
national security missions. Although many companies have 
pioneered ML methods for commercial use, the Laboratory’s 
problems often have different characteristics and demand unique 
solutions. Data-driven scientific decisions rely on researchers 
to create nuanced ML algorithms that can derive meaning from 
simulations, images, text, speech, video, and other data types. 
The article spotlights several ways in which Laboratory scientists 
adapt ML techniques to tackle application-specific challenges.

This adaptation can be incredibly difficult. For example, 
consider the ML task of classifying objects in an image, in 
which the computer tries to do what human eyes and brains can 
do easily. Indeed, the technology behind the ML algorithms 
that can successfully identify a cat, for instance, in a series 
of photographs is impressively complex. The computer must 
learn to distinguish feline-specific features from other pictured 
objects, the background, or interference. The process may entail 
pixel-level comparisons, color analysis, recognition of edges and 
boundaries, and more.

Now imagine programming a computer to detect the slightest 
three-dimensional anomalies in a two-dimensional scan of a 
vehicle at a border crossing. The computer must predict locations 
in the single image to search for unusual but nonspecifically 
defined objects that are not directly observable by humans. 
Compared to the cat-identification model, this cargo-scanning n Bruce Hendrickson is associate director for Computation.

problem has fewer data to  
evaluate with more uncertainty  
and far greater consequences  
of error—such as incorrect  
or missing identification.  
Livermore is at the forefront  
of ML research that addresses  
real-world scenarios whose  
requirements go far beyond  
those satisfied by out-of-the- 
box ML tools. 

Equally important is the advancement  
of ML as a science. Throughout history, many technologies have 
been developed and used before their mathematical and physical 
underpinnings had matured. Understanding the underlying 
principles of ML methods is important for reducing flaws, 
improving results, and enhancing our scientific knowledge.  
At Livermore, we strive to better comprehend how these methods 
work—such as how a specific prediction is made—so that we 
can have greater trust in them, and they can provide greater 
explanatory power. We seek assurance that ML models correctly 
extrapolate information and accurately reach conclusions. Unlike 
a movie recommendation, the decisions we make have significant 
consequences, and so we must have high confidence in them.

Fortunately, the Laboratory’s culture of multidisciplinary 
teamwork helps maximize the potential of this new technology. 
Our computer scientists, data analysis experts, and domain 
scientists work alongside each other to a degree unmatched 
in industry or academia. This collaboration across traditional 
disciplinary barriers, combined with powerful supercomputing 
capabilities, enables us to drive and respond to evolving 
technologies such as ML.

No doubt the ML landscape will look very different over 
the next few years, and it will become ever more important to 
the Laboratory’s missions in ways not yet foreseen. Given the 
increasing amounts of data being generated by experiments, 
simulations, and other sources, our researchers will continue  
to embrace and invent new data science and ML methods.  
This transformation of data-driven science is just beginning.

Machine Learning and Laboratory 
Science Drive One Another
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Livermore computer scientists advance machine learning technology for      scientific applications.

MORE than 
just a buzzword, machine 
learning (ML) has become part of 
everyday life. Social media platforms 
recognize faces in photos. Online 
stores recommend products related to 
shoppers’ browsing and purchasing 
behavior. Smartphones offer word-
completion suggestions based on users’ 
texting habits. Search engines refine 
results after learning from users’ past 
actions. Only with ML technology can 
self-driving cars adapt to moving traffic.

ML uses computers to learn from 
data and make predictions about the 
environment. As the world generates 
more data, interpretation becomes more 
difficult. Lawrence Livermore computer 
scientist Peer-Timo Bremer explains, 
“Humans reach a limit where they cannot 
perform the analysis anymore.”  
A smart machine—one that adapts to new 

information on 
the fly—can speed up 
processing and analysis times and 
improve its accuracy in identification and 
prediction tasks. Although commercial 
and consumer applications of ML are 
numerous, Livermore’s mission space 
also presents ample opportunities for 
exploiting ML tools, often requiring 
new development beyond standard 
applications. (See box p. 7.) 

Indeed, Livermore faces unique 
challenges in advancing the ML arena. 
Bremer points out, “Commercial 
companies do not solve scientific 
problems, just as national laboratories do 
not optimize selections of movie reviews. 
We therefore build on commercial tools 
to create the techniques we need to 

analyze data from 
experiments, simulations, 
and other sources.” ML algorithms 
must be scaled for high-performance 
computing (HPC) machines, and different 
types and varying volumes of data 
complicate matters. For example, one 
project may have access to thousands of 
patient health records, whereas another 
may only have data from a handful of 
National Ignition Facility (NIF) shots. 
Bremer continues, “A team may have to 
sort through genetic sequences, protein 
structures, energy spectra, x-ray images, 
or combinations of these.” Other issues 

Machine Learning
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with scientific 
data include noise 
and imbalance—such as a handful 
of successful drugs versus millions of 
ineffective compounds—which will bias 
traditional data-driven models.

Along with Bremer, computer scientists 
Rushil Anirudh, Harsh Bhatia, Bhavya 
Kailkhura, Hyojin Kim, Shusen Liu, 
and Jayaraman Thiagarajan are go-to 
ML experts. They take a bidirectional 

approach, both 
advancing underlying 
theory and solving real-world 
problems. The algorithms involved are 
run on several on-site HPC resources, 
including Sierra, the Laboratory’s newest 
and fastest supercomputer.

Machine LearningS&TR March 2019

As valuable tools for 

analyzing data from 

scientific simulations 

and experiments, 

machine learning (ML) 

algorithms are run on 

many of Livermore’s 

high-performance 

computing resources, 

such as the new 

Sierra supercomputer. 

(Photo by  

Randy Wong.)
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Perfecting the Process 
Scientific analysis involving ML 

generally follows a cycle in which 
sample design guides data collection. 
Data are processed with ML algorithms 
and their associated frameworks—
collectively, the ML model—which 
are designed to learn from data inputs. 
Results are scrutinized for errors and 
unknown variables, providing statistical 
quantification of uncertainties and 
informing subsequent sampling. All 
stages of the cycle are interpreted with 
visualization tools. The ML model is first 
trained on smaller, representative data 
sets to refine this process. 

ML algorithms serve various purposes. 
For instance, neural networks (NNs) 
connect artificial neural units to observe 
and make inferences from data. Deep 
learning is another category of algorithms 
in which hierarchical layers of NNs 

adaptively learn from data to discover new 
features. In addition, ML methods respond 
differently depending on data properties. 
In supervised ML, the system analyzes 
labeled or classified data. In unsupervised 
ML, data are not labeled or classified, so 
the computer learns to identify common 
traits. Other types of learning are self-
supervised—labeled and unlabeled data 
combined—and reinforcement—based on 
prior performance.

Livermore researchers actively 
develop new ways of configuring and 
deploying such algorithms. The common 
thread is improving ML’s accuracy 
and efficiency for the benefit of the 
entire scientific analysis workflow. 
Accordingly, Thiagarajan explains, “All 
application domains face the same issue, 
and the conversation must start with the 
kind of data needed. Scientific analysis 
is driven by data.”

Designing the Data Sample
Sample design is the key to quality 

results, especially when a project 
faces scope or resource constraints. 
Kailkhura notes, “Sampling requires 
configuring experiments and simulations 
to generate the most informative data. 
ML algorithms will not offer new 
insight if samples contain inaccurate or 
incomplete information.” For instance, if 
a team with limited computing resources 
wants to run simulations of NIF shots, 
beforehand they must choose, as the 
focus of their investigation, the most 
valuable parameters. “These are the 
parameters,” Kailkhura explains, “that 
will acquire the most information given 
a number of simulation runs, such as 
implosion dimensions.”

Kailkhura looks at sample design 
abstractly, seeking mathematical 
solutions for sampling optimization 
problems. A high-dimensional (HD) 
parameter space is needed to represent 
the key factors that affect the results of 
a complex experiment or simulation. 
The higher the dimensionality, the more 
data are required to sample the space. 
Kailkhura describes these spaces from a 
theoretical perspective, citing the widely 
known sphere-packing problem—finding 
the ideal arrangement of oranges in a 
crate for n dimensions. In this problem, 
oranges represent data points in a 
sample, and the crate is the domain of 
interest, as in an inertial confinement 
fusion (ICF) implosion. The way the 
oranges are packed signifies the pattern 
of selected data points. Optimized sphere 
packing, or space filling, enables ML 
models to process data more quickly by 
minimizing the number of steps to reach 
a solution. Moreover, the models can 
provide insights into data not acquired 
yet, hence ML’s predictive capabilities. 
Kailkhura seeks to cover as much of the 
space as possible while also obtaining 
the greatest information from the data 
sample. He states, “We strive for the 

Machine Learning

In scientific analysis using ML, sample design informs data collection in simulations and 

experiments. The ML model processes the data and generates predictions, which are then 

evaluated for quality. Results from both training and actual data are fed back into the sample 

design to refine the process. Visualizations are used for interpretation.
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right balance between coverage from 
uniform sampling and maximized 
information from random sampling. 
The optimal sample design will have 
some combination of uniformness and 
randomness.”

Kailkhura collaborates with Bremer 
and Thiagarajan on a project, funded 
by the Laboratory Directed Research 
and Development Program, aimed at 
exploring spectral sampling of HD 
spaces. In this context, spectral refers 
to the frequency of change among data 
points—a necessary consideration, the 
team argues, in addition to the data’s 
spatial arrangement. Spectral analysis 
can enable better understanding of 
space-filling sample designs by finding 
a balance between uniform and random 
coverage. The project’s goals are to 
determine optimal sampling patterns 
and to create ML algorithms that can 
generate those samples in any HD space. 

The project team uses a combination 
of exploration and exploitation 
techniques—sampling input variables 
independently of the output while 
using knowledge of the output to guide 
sample design, respectively. Project 
leader Thiagarajan notes, “We start 
the optimization process with blind 
exploration of data points, then switch 
to exploitation to search the regions of 
highest interest.” This hybrid approach 
achieves better results than traditional 
methods by weighing both high- and 
low-frequency information—information 
respectively about more and less 
frequent change. The range of analyzable 
frequencies is maximized, providing 
statistically higher confidence in 
results. In recently published tests using 
data from NIF hot spot simulations, 
Livermore’s spectral-sampling technique 
doubles the accuracy to significantly 
outperform other sample designs. 
Ultimately, optimized data inputs 
improve the ability of ML models to 
make useful predictions.

Machine Learning

Essential Expertise
Examples abound of Lawrence Livermore’s growing demand for machine learning (ML) 

to solve challenges in scientific data analysis. One research team created a toolkit that 
trains massive neural networks on image data. (See S&TR, June 2016, pp. 16–19.) Another 
project focuses on time-varying data, which reveal patterns in time. In this scenario, new 
ML algorithms progressively use existing observation-based data to forecast future events. 
For example, clinical decision making could be enhanced by ML analysis of trends in 
patient data.

One National Ignition Facility project leverages ML to analyze the largest-ever data 
set from inertial confinement fusion (ICF) implosions. (See S&TR, September 2018, 
pp. 16–19.) Another group is developing an innovative cognitive computing platform 
that combines ML with graph analytics and other areas of artificial intelligence to 
improve ICF simulation efficiency.

ML is also speeding up data analysis and prediction in three-dimensional printing and 
making multimodal data analysis easier in nuclear nonproliferation. Materials scientists 
use ML and big data analytics to accelerate materials synthesis and optimization. 
(See S&TR, July/August 2017, pp. 16–19.) ML technology helps Livermore scientists 
catalog and interpret objects orbiting Earth and process huge volumes of data captured 
by ground- and space-based telescopes. Livermore has also partnered with several 
institutions to accelerate drug discovery and development by integrating high-
performance computing, ML, and other data science technologies. Computer scientist 
Rushil Anirudh notes, “The possibilities of ML are exciting. Whenever we reach a 
roadblock, we find ways to break through with ML.”

(left) Random sampling of image reconstruction data finds only one significant pattern, as shown 

by concentric rings (upper left corner). (right) The team’s spectral-sampling method reduces 

noise and other artifacts to reveal additional zones of interest in the data. 
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Trusting the Model
Model interpretability is another 

methodological ML pursuit at the 
Laboratory. “Human nature requires 
justification,” states Liu. “We want to 
know which symptoms correlate to 
a particular diagnosis. We want to 
know how a conclusion was reached.” 
Justification means providing rationale 
for how ML models work and the results 
they predict so stakeholders will trust 
both. Liu continues, “Interpretability is a 
necessary part of explaining or modifying 
an ML model, especially if the application 
is as important as NIF and not simply 
images of cats and dogs.” Interpretability 
involves confronting tricky questions. 
For example, Bremer asks, “If a model 
is trained on a certain data set, how does 
one know it is not biased toward those 
data’s properties?” An ML model might 
advise a bank that residents of a certain 
neighborhood are unsuitable candidates 
for a mortgage loan. If an applicant’s 
address is the only criterion affecting 
loan approvals, then the model ignores 
other relevant information such as credit 
score or loan repayment history. Avoiding 
bias means understanding how the model 
arrives at a prediction and finding where 
bias might originate.

ML models do not have to specify a 
path to a solution. Consequently, Bremer 
cautions, “We may not understand how 

the model performed its analysis, which 
undermines confidence in the solution, 
especially for nonexperts.” The stakes are 
even higher for large-scale models with 
thousands or millions of parameters. The 
quest for useful ML interpretation comes 
with many challenges, such as the absence 
of a universally agreed-upon explanation. 
To control error and variability in new 
ML approaches, Liu advocates for 
transparency so that the model is not 
merely a “black box.”

Liu studies ML models through 
exploratory analysis. He states, 
“Conventional interpretation techniques 
study the model as an invariant object, 
where its behaviors are recorded and 
analyzed in an offline fashion.” Instead, 
Liu recommends perturbation as one 
interpretation tool. Analogous to adjusting 
a radio’s volume by turning a knob, 
researchers can perturb different variables 
and observe the behavior of others.  
For instance, masking a localized part of  
an image can affect the prediction of what 
the image contains. By dividing an image 
into a pixel grid and shifting the mask 
around the grid, researchers can calculate 
each pixel’s importance in identifying the 
desired object. Liu explains, “This approach 
investigates relationships between inputs 
and outputs to determine which properties 
of the input contribute to the prediction.”

Optimization of latent spaces presents 
another step toward interpretability. Latent 
space lies between ML processing’s 
encoding and decoding stages and captures 
variations and other key underlying 
information in a compressed representation 

Machine Learning

Input                                           Model                                        Prediction

Perturbation is one method of exploring an ML model’s interpretability in which researchers 

adjust—in a manner akin to turning a dial—different factors and observe the effects. 

80

40

0

–40

–80
    –40               0              40              80     

   0.0   0.5

A 10-dimensional latent space of inertial confinement fusion (ICF) simulation data is reduced to 

the 2-dimensional visualization shown, in which the axes and scale no longer have explicit physical 

meaning. (insets) Different areas of the latent space capture various shapes of ICF images, providing 

insight into how the ML model interprets variations in high-dimensional (HD) data.
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of the data. Unsupervised ML models 
map inputs through layers of NNs into 
the latent space, where data are reduced 
into lower dimensional representations, 
enabling the model to identify hidden 
features beyond those observed. “In many 
real-world scenarios, HD data can be 
compressed into spaces with as few as 
two to four dimensions,” notes Kailkhura, 
whose work in sample design optimizes 
an understanding of these latent spaces. 
Knowing more about the features of 
these latent spaces makes results more 
interpretable.

“Latent spaces are compact and 
descriptive but typically not transparent or 
intuitive,” says Bremer. Therefore, Liu and 
colleagues apply nonlinear dimensionality 
reduction functions to latent spaces and use 
visualizations to discover feature variations 
captured and distributed throughout these 
spaces. By comparing visual encodings of 
the HD space, researchers can determine 
how many dimensions yield the most 
valuable information. In one study of ICF 
simulations, the team compared image 
patterns in 10- and 16-dimensional latent 
spaces and found that the latter did not 
fully use all dimensions. Liu summarizes, 
“By reducing the dimensions when 
exploring the latent space, we can directly 
assess the information captured by that 
space and explain the differences between 
simulations.” 

For many scientists who rely on 
ML, seeing is believing. Topological 
data analysis is another valuable tool 
for understanding the structure of HD 
spaces, and the resulting visualizations 
help Livermore researchers explain and 
verify ML models. “Topology produces 
abstract structures that generalize to high 
dimensions,” notes Bremer. Laboratory 
researchers have released open-source 
software that render data relationships 
through mountains, valleys, and other 
maplike contours. Bremer continues, 
“We can extract HD properties and 
show them as a low-dimensional terrain. 

Visualizations allow us to find patterns 
or anomalies that other statistical 
methods may not find, so we can evaluate 
information that would otherwise be 
incomprehensible.”

Case Study: Multiscale Modeling
In 2016, the Department of 

Energy (DOE) and the National Cancer 
Institute launched a multiyear partnership 
to advance cancer research using modern 
HPC resources. Livermore plays a central 
role in the program’s three pilot projects. 
(See S&TR, October/November 2016,  
pp. 4–11.) One project, nicknamed Pilot 2, 
brings together three DOE laboratories—
Lawrence Livermore, Los Alamos, and 
Oak Ridge—and Frederick National 
Laboratory for Cancer Research to explain 
interactions between cell membranes and 
specific proteins that induce many forms 
of cancer. (Pilots 1 and 3 focus on drug 
discovery and patient health records.)

To guide multiscale simulations of 
these interactions, Pilot 2 collaborators—
including Bhatia and Bremer—develop 
ML approaches aiming to understand 
both the mechanism of a protein called 
RAS and the signaling chain that causes 

another protein, RAF, to interact with 
RAS. “ML is at the very center of this 
project, integrating different areas of 
expertise,” states Bhatia. “We use ML to 
locate phenomena occurring on the cell 
membrane in coarse simulations, which 
we can then investigate more closely 
with higher fidelity simulations.” With 
this computational steering approach, 
researchers guide simulations to gain 
specific insight while maximizing the 
throughput of computational resources.

Understanding protein biology 
requires modeling at different spatial 
and temporal scales—from nano- 
to milliseconds and from nano- to 
micrometers. Bhatia explains, 
“Simulating the underlying phenomena 
with sufficient accuracy at fine scales is 
prohibitively expensive computationally.” 
Therefore, the project’s sophisticated ML 
model is trained on coarse macroscale 
simulations before resources are spent 
on more detailed microscale molecular 
dynamics (MD) simulations. He 
continues, “Coarse simulations give us 
a reasonable approximation of results. 
The ML model identifies important areas, 
such as a small location where a protein 

Machine Learning

                                           These topological visualizations uncovered new information from ICF 

                                 simulations, an example of HD information. (top) Initially, the team identified  

                         two peaks where implosion yield is maximized. (bottom) Resampling with  

                 40,000 data points around these peaks revealed a new peak that would have been  

       ignored with traditional statistical sampling. This ML analysis was part of a project  

investigating ICF target shape. (See S&TR, September 2018, pp. 16–19.)
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interacts with the cell membrane, where 
we should invest our resources at a higher 
resolution. We want to investigate enough 
regions of interest to make statistical 
claims over a long temporal range 
without running simulations for the entire 
period.” This tactic could cut simulation 
time from months to days.

Computational steering is a sampling 
problem. Accordingly, the approach 
takes advantage of latent spaces. Bhatia 
says, “We have millions of potentially 
interesting data points with nonlinear, 
highly complex relationships. For example, 
consider finding similar-looking houses 
among millions of photos. We could 
not simply compare individual pixels to 
determine similarity.” The team’s ML 
solution includes an autoencoder—a deep 
NN—that reduces the data into a latent 
space. From there, the model chooses the 
features most dissimilar from previous 
iterations and ranks the results according 
to importance—from most to least 
anomalous. Even with compression, a 
million data points could be flagged, which 
is why using latent spaces is key.

In a process called adaptive sampling, 
data generated by macroscale simulations 
inform sampling of the MD simulations—
the latter, in turn, becomes part of the 
feedback loop to update the former. 

Together, autoencoding, adaptive 
sampling, and the in situ feedback cycle 
allow the team to manage over a million 
samples through HD analysis and, 
therefore, run macro simulations with 
the accuracy of MD. “These types of 
simulations are novel, and we are scaling 
the workflow to target a supercomputer 
such as Sierra,” states Bhatia. In 2018, the 
Pilot 2 team reached a major milestone by 
computationally steering such multiscale 
simulations on Sierra.

Case Study: Threat Detection
Three screening scenarios—

medical diagnosis, airport luggage, 
and commercial truck cargo—share 
important characteristics. All require 
expert analysis of image scans, 
and threats are reduced with quick 
identification of suspicious objects. 
Automatically flagging suspicious areas 
in an image saves human operators’ time 
while minimizing errors. For example, 
maximized information from a computed 
tomography scan can help reduce a 
patient’s radiation exposure or improve 
prognosis with early cancer detection. 
In all three scenarios, the goal is higher 
detection rates with fewer false alarms. 

Lung cancer nodules are inconsistent 
in size and shape and may not appear 

clearly in a lung image. A radiologist can 
mark a nodule in an image but cannot be 
expected to label every affected pixel. 
ML algorithms require more specific 
coordinates for nodule location, so the 
model must learn to create detailed labels 
at different stages of analysis. Anirudh 
explains, “We use unsupervised strategies 
to estimate nodule characteristics, such 
as boundaries, in weakly labeled data.” 
Kim adds, “This model will not replace 
radiologists’ expertise but will significantly 
reduce their workloads by filtering out 
images that do not need close review. The 
model can also provide a ‘second opinion’ 
to reduce diagnostic errors.”

Luggage screening technology stands 
to benefit from ML-driven efficiencies in 
image quality, as airport scanners often 
provide sparse views of imaged objects. 
The Livermore team built a system of 
one- and two-dimensional NNs to recover 
limited-angle or partial-view images. 
Mindful of interpretability, they also 
designed a confidence score to gauge 
results reliability. The score is calculated 
from estimates of pixel variabilities within 
the model’s latent space and is correlated 
with reconstruction quality. The team’s 
image reconstruction and segmentation 
techniques have shown higher fidelity to 
ground truth than other methods. 

Machine Learning

An illustration shows how ML is at the center of the Pilot 2 cancer research workflow, connecting coarse macroscale simulations (left) and fine microscale 

molecular dynamics (MD) simulations (right) used to investigate mediation of cancer initiation by the protein RAS. An autoencoder reduces macroscale 

model data into a latent space, where the data are ranked by novelty and importance. MD simulations are reserved for the most important regions, thereby 

conserving computational resources. The result is simulations with macro (long) length and timescales that also provide insights at the microscale.
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At ports of entry, analysts see only a two-
dimensional scan and must decide whether 
cargo contains, for example, nuclear 
materials stashed among a truckload of 
appliances. The cargo’s three-dimensional 
depth cannot be directly observed and so is 
inferred from a sum of the layers in a single 
image. The Livermore team has developed 
a source-separation model that splits a 
single image into multiple images to predict 
distribution of cargo materials. By training 
on probabilistic “clean” data separated 
into layers, this unsupervised ML model 
develops a surrogate for physical materials, 
then applies it to subsequent scans. 
Thiagarajan compares this technique to the 
way the brain identifies merged objects, 
saying, “If I show you separate images of 
a face and a pair of sunglasses, you can 
mentally combine them.” 

In addition, Livermore researchers 
are moving toward what Anirudh calls 
“ML 2.0”—a more robust unsupervised 
model that does not collect data sets for 
every task. For example, Kim explains, 

“Thousands of unlabeled bags are scanned 
daily at airports. When a new object is 
introduced, the scanner needs to detect 
the abnormality for the security officer 
to investigate.” The team is solving 
such inverse problems with adversarial 
NNs, which perform generative and 
discriminative evaluations to reduce errors.

Disruptive Advances
In the quest to understand human 

intelligence, researchers across the 
Laboratory are evolving scientific ML in 
areas such as mathematical neuroscience, 
brain-inspired network architectures, 
representation learning, and multistage 
training algorithms. Thiagarajan says, 
“Combining scientific exploration and 
artificial intelligence opens up exciting 
opportunities for solving real-world 
challenges.”

Livermore’s ML experts agree that 
most research teams at the Laboratory 
will eventually seek ML-driven solutions 
to the challenges they face. In fact, 

many mission-critical programs already 
rely on ML technologies. Kailkhura 
states, “Once you grasp the concepts, 
the applications are numerous.” Bremer 
adds, “Grand challenges in science and 
computing cannot be addressed with 
incremental improvements. Instead, we 
must look for disruptive advances with 
significant technical, programmatic, and 
strategic impact. Livermore is absolutely 
the right place—perhaps one of the only 
places—to do this.”

—Holly Auten
Key Words: algorithm, computational 
steering, deep learning, high-dimensional (HD) 
space, high-performance computing (HPC), 
image reconstruction, image segmentation, 
inertial confinement fusion (ICF), Laboratory 
Directed Research and Development Program, 
latent space, machine learning (ML), model 
interpretability, neural network (NN), sample 
design, simulation, source separation, spectral 
sampling, topological visualization.

For further information contact Peer-Timo 

Bremer (925) 422-7365 (bremer5@llnl.gov).

Machine Learning

(top) Illicit materials inside a vehicle are difficult to discern from this single-view scan. (bottom) The Laboratory’s ML source-separation technique 

divides the image into layers from which the three-dimensional depth of the contents can be discovered.
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Five Tracks to Cover the Possibilities
The result of this consultative development is a flexible facility 

with a strategic plan that offers five tracks for partnerships: 
design, materials, processes, applications, and qualification 
and certification. Each track focuses on a particular area of 
manufacturing relevant to a party’s interests. In the design 
track, for example, partners can leverage Livermore’s design 
optimization capabilities and high-performance computing 
resources to improve complex, multifunctional designs for their 
products. The materials track applies Livermore’s expertise 
in developing new manufacturing materials, such as metallic 
particles, nanomaterials, glass, and liquid photo resins. 

“We are looking for partnerships with industry in areas of 
research and development that we both care about,” states Chris 
Spadaccini, director of the Center for Engineered Materials and 
Manufacturing and head of Livermore’s Additive Manufacturing 
Initiative. “We expect that both sides will contribute actively to 
efforts that advance technologies useful to our partners’ needs 
and the Laboratory’s missions. We are also pursuing partnerships 
with academic institutions, because AML could serve as a hub 
to support student and faculty interactions with Livermore and 
the commercial sector.” In developing AML, the Laboratory 
took active steps to fully understand industry’s needs, such as 
holding an “industrial partnerships day” to hear from potential 
partners in person and using the Federal Business Opportunities 
channel to solicit partnership ideas from companies. Anantha 
Krishnan, the Laboratory’s associate director for Engineering, 
says, “AML is enabling a new business model for Livermore to 
team with industrial and academic partners, and the success of 
these collaborations could provide a template for public–private 
partnerships in the future.”

of strategic partnerships in the Laboratory’s Engineering 
Directorate. “AML will help us take advantage of industry’s 
innovation by partnering our R&D efforts with theirs, 
accelerating the progress of both.” Livermore’s growing 
research efforts in additive manufacturing, along with 
development of an open space for research collaboration, 
planted the seeds that germinated into the new facility.  
From planning to opening, creating AML took  
approximately three years.

Outside the Fence for Easier Access
AML is located “outside the fence”—on the Livermore Valley 

Open Campus (LVOC), which is sited beyond the security fence. 
The LVOC location facilitates collaboration and communication 
by freeing partner personnel from the strict security requirements 
that must be followed when working within Laboratory 
boundaries. At the same time, AML’s partnership model provides 
mechanisms to address the partners’ concerns, including 
intellectual property and confidentiality.

ADVANCED technology is reshaping and transforming   
 manufacturing the world over. Signs of this transformation 

are everywhere: factory automation, machine learning, additive 
manufacturing, robotics, and cloud-based process management, to 
name only a few trends. Livermore contributes to this renaissance 
through its research and development (R&D) in fields such as 
advanced manufacturing, partnerships that use the Laboratory’s 
high-performance computing to improve industrial processes, and 
commercializing new manufacturing technologies.

Now, the Laboratory has opened the Advanced Manufacturing 
Laboratory (AML), a 1,300-square-meter facility where 
Livermore scientists and engineers are working side by side 
with partners in the private sector and academia to create 
new materials and technologies. R&D at AML aims to further 
Livermore’s national security missions while enabling partners to 
release new products and services into the marketplace, a process 
called spin-in/spin-out technology development.

“U.S. industry is becoming highly innovative in 
manufacturing technology,” says Patrick Dempsey, director 

THE ADVANCED MANUFACTURING  
LABORATORY IS OPEN FOR BUSINESS

The Laboratory, industry, and academia are working side by side to develop 

advanced materials and manufacturing processes at the Advanced Manufacturing 

Laboratory (AML), located on the Livermore Valley Open Campus. Partnerships 

at AML are designed to further Livermore’s missions and benefit partners 

developing commercial products and processes. (Photo by Randy Wong.) 
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At AML, the partners are developing the prototype for a 
feedforward control–based machine capable of 3D printing  
high-quality metal parts. “We aim to get feedforward control 
into an additive manufacturing system within two years. The 
key to success is incorporating this control approach into a 
commercial machine, something that would not be possible 
without GE,” says King. (See S&TR, January 2015, pp. 13–18.) 
The Department of Energy’s Technology Commercialization 
Fund is supporting the Livermore–GE partnership. In addition, 
the Laboratory, GE Global Research, and several other partners 
are developing feedforward methods to speed up the qualification 
and certification of 3D-printed metal replacement parts for the 
U.S. Navy, an effort funded by the Office of Naval Research.

These three examples represent the many partnerships that are 
active or under development at AML—and the Laboratory is seeking 
to establish more. When Livermore’s talented researchers partner 
with their industrial and academic counterparts in a space containing 
some of the world’s most advanced manufacturing capabilities, the 
expected result is not merely accelerated innovation, but innovation 
that benefits U.S. industry and advances the Laboratory’s missions in 
the face of rapid transformation in these arenas.

—Allan Chen

Key Words: additive manufacturing, advanced manufacturing, 
cooperative research and development agreement (CRADA), Edmund 
Optics, feedforward control, General Electric (GE), inertial navigation, 
Laboratory Directed Research and Development Program, Livermore 
Valley Open Campus (LVOC), micromirrors, quantum sensors, two-
photon lithography, Vector Atomic.

For further information contact Patrick Dempsey (925) 423-1868 

(dempsey4@llnl.gov).

a group leader in Livermore’s Materials Science Division. 
“The damage mitigation process we developed uses carbon 
dioxide lasers to repair damage on the surfaces of silica optics, 
smoothing their imperfections. We realized that this process 
could be used for the laser polishing of glass, even the localized 
repair of NIF optics.” The enabling research was funded 
primarily by the Laboratory Directed Research and Development 
Program. (See S&TR, April/May 2017, pp. 17–20.)

At a conference in 2014, a presentation about the technology 
by Matthews, Materials Science Division staff scientist Nan 
Shen, and their team attracted the attention of Edmund Optics, 
which quickly entered into talks with Livermore. The U.S.-
based company eventually established a CRADA to work with 
the Laboratory at AML. The partnership’s goal is to extend 
Livermore’s technology into a commercial system capable of 
polishing industrial lenses and mirrors to the same high surface 
quality demanded by NIF. 

Perfecting a Manufacturing Control Method 
An industrial manufacturing process must be carefully 

controlled to ensure that the final product conforms exactly to 
specifications. Livermore researchers have teamed with General 
Electric (GE) to explore a method called feedforward control in 
the additive manufacturing of three-dimensional (3D) parts. “In 
feedforward control, a computer model simulates a part and its 
manufacturing process,” explains Wayne King, the partnership’s 
Livermore lead and overall lead of the Accelerated Certification 
of Additively Manufactured Metals Project. “The simulation 
actually trains the manufacturing tool in building the part, so 
the quality of the final product depends on the fidelity of  
the simulation.”

determine the position and orientation of a vehicle by precisely 
measuring its linear and rotational acceleration through the 
quantum interference of atomic wave functions. To achieve 
small size and low power usage in these devices, Vector Atomic 
is using AML’s facilities and staff to incorporate Livermore-
developed micromirror array technology, which controls and 
directs light using microscale structures to manipulate arrays 
of tiny mirrors. (See S&TR, September 2017, pp. 16–19.) In 
addition, the partnership will rely on AML’s unique micro- 
and nano-additive manufacturing processes and precision 
microassembly capabilities.

Livermore is pursuing the Vector Atomic partnership through 
a cooperative research and development agreement (CRADA). 
Engineer Robert Panas, the Livermore lead for the partnership, 
explains, “The CRADA will allow us to merge these two 
technologies. Our micromirror technology can modulate and 
tune the laser power for the atomic sensors more accurately than 
any other available technology. The result will be a device that 
can operate in demanding environments with substantial jostling 
and shaking. We expect the combined product to represent an 
improvement of more than an order of magnitude over current 
inertial navigation systems.” 

Optics Polished to a Fine Shine
Large fluxes of energy pass through the optics of the  

192 beams comprising the world’s highest energy laser, 
Livermore’s National Ignition Facility (NIF). With repeated 
shots, tiny pits in NIF’s optical glass can enlarge to become 
damage sites that compromise performance. “The Laboratory 
has made a substantial effort to mitigate damage precursors and 
initiated damage sites on NIF’s large optics,” says Ibo Matthews, 

AML’s facilities reflect Livermore’s process expertise across 
a broad spectrum of materials and scales, including direct 
ink writing, powder bed fusion, electrophoretic deposition, 
projection microstereolithography, and laser-based processes 
such as two-photon lithography and selective laser melting. 
With these capabilities, partners on the applications track can 
develop new materials and components for nearly any sector—
transportation, defense, energy, or biomedicine, for example. 
With some advanced manufacturing processes promising shorter 
development times, the qualification and certification track 
is tailored to accelerate the commercial acceptance of new 
materials, processes, and components. AML is currently home 
to more than half a dozen partnerships, and more are in the 
pipeline. Three examples demonstrate how the private sector is 
taking advantage of AML’s full potential.

Locating Accurately in Time and Space
The Global Positioning System’s (GPS’s) network of satellites 

has revolutionized navigation, allowing even ordinary consumers 
with a GPS-enabled device to accurately determine their location 
almost anywhere on Earth. However, in a critical application 
such as aeronautical or marine navigation, failure of a GPS 
receiver could be disastrous. Vector Atomic, a startup in Oakland, 
California, is developing quantum sensors for inertial navigation 
and timing that do not rely on GPS. Instead, the devices will 
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The 1,300-square-meter AML has some of the world’s most sophisticated 

capabilities for developing new advanced manufacturing technologies, 

including wet and dry laboratories, laser-based technologies, and a 

characterization laboratory. 

In each area of AML, advanced 

manufacturing equipment is being moved 

in and set up. Here, Laboratory researchers 

will collaborate closely with partners in 

industry and academia in nearly any sector, 

including defense, transportation, energy, 

and biomedicine. (Photo by Randy Wong.)
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VACCINES teach the immune system to fight disease by 
mimicking what the body would encounter during a natural 

infection. The immune system’s response to a live bacteria 
or virus is similar to its reaction to the attenuated (weakened) 
or inactivated (dead) version of a pathogen used in a vaccine. 
After vaccination, reexposure to the live microbe causes the 
body’s immune system to “recall” the prior reaction, stopping 
the infection more quickly than it would have without the initial 
encounter. This immunological memory is the basis for vaccine-
mediated protection.

Many licensed vaccines use attenuated viruses or bacteria, 
which stimulate a strong response and confer robust immunity, 
but these types of vaccines have some drawbacks. Individuals 
with immune deficiencies may be unable to receive them safely. 
Furthermore, the attenuated microbe, once inside the human 
body, could mutate into a more virulent form—although this 
scenario is unlikely. In addition, live vaccines must be stored at 
low temperatures and therefore may be impractical for areas with 
limited refrigeration, such as war zones and developing regions. 
Inactivated vaccines, on the other hand, cannot mutate, are safe for 
nearly everyone, and can often be transported without refrigeration. 
Unfortunately, most inactivated vaccines, which provoke a weaker 
immune response than do live vaccines, may require booster shots 
to maintain immunity and so may provide only partial protection 
against exposure.

A different type of vaccine—one that uses components of a 
pathogen rather than the whole organism—could offer the best 

A LONG SHOT PAYS OFF IN 
VACCINE DEVELOPMENT

Lawrence Livermore biologists (from left)  

Amy Rasley, Nicholas Fischer, and Matthew Coleman 

pose in front of a flow cytometer. Using this system, 

the team performs multicolor flow cytometry and 

high-throughput cell sorting to interrogate immune 

cell populations of interest. Their aim is to understand 

the mechanisms by which their vaccine formulation 

protects against Francisella tularensis, the bacterium 

that causes tularemia. (Photo by Randy Wong.)  

(right) F. tularensis is highlighted blue.
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From What to Why
After identifying an effective vaccine, the team set out to 

understand why the formula works—a challenging investigation 
made somewhat easier by the subunit vaccine’s relative simplicity 
and strict standardization. Fischer explains, “Determining what 
protects the host in a vaccine based on a whole, attenuated 
bacterium can be difficult because of the hundreds of synergistic 
components involved. In contrast, our formulation has only 
three components, so we can sort out the protection mechanism 
systematically. Once we understand the mechanism, we can see 
why it’s working and identify correlates.”

Correlates are additional standards by which the researchers 
can determine whether the vaccinated animals are protected, 
beyond simply testing whether the animal survives exposure. 
Identifying these correlates will be crucial for subsequent 
evaluations of how effective these vaccines are in other animal 
species, as well as in humans. Determining the protection 
mechanisms and correlates will occupy the next three to five 
years, according to Rasley. “We have a lot of important science 
to do,” she states. The team is also reaching out to companies 
that specialize in producing vaccines at scale in accordance with 
reliable manufacturing processes. Although the Laboratory will 
not be commercially releasing the vaccine, demonstrating viable 
manufacturing at scale is another key step on the long path to 
vaccine approval and distribution—and the ultimate goal of 
robust protection against a dangerous pathogen.

—Rose Hansen
Key Words: antibody, antigen, attenuated bacterium, bioterrorism, 
Francisella tularensis, immune response, nanolipoprotein (NLP), subunit 
vaccine, tularemia.

For further information contact Amy Rasley (925) 423-1284  

(rasley2@llnl.gov). 

cause illness in humans. Researchers now use a type of rat for such 
studies that better mimics human vulnerability to the pathogen.

According to Amy Rasley, Livermore biomedical scientist 
and F. tularensis vaccine development project lead, the biggest 
challenge is that biologists only partially understand the specific 
immune responses that a successful vaccine should provoke to 
this complex organism. She explains, “Most routine childhood 
vaccines focus on generating antibody responses. Past research 
suggests that antibody production is essential but not sufficient 
for protection against tularemia. Success rates for any vaccine 
drop when multiple immune responses are needed to combat the 
pathogen.” Given the relative rarity of the illness in humans and 
the incomplete understanding of what constitutes a protective 
immune response, vaccine researchers must rely on rigorous 
experimentation and iteration, as well as patience. 

Settling on the Right Combination
The initial Livermore approach was relatively simple. Building 

on previous F. tularensis studies, researchers created an NLP-based 
vaccine formula and used it to inoculate rodents. A few weeks 
later, the animals were exposed to a highly virulent, aerosolized 
form of F. tularensis to assess the degree of protection—whether 
the animals became ill, whether ailing animals recovered or died, 
and what the death rate was. Over a four-year period, the team 
tested dozens of antigen–adjuvant combinations, concentrations, 
delivery routes, and dosing schedules but never achieved more 
than 20 percent protection. “It was heartbreaking,” confesses 
Rasley. “Something is definitely unique about F. tularensis that 
makes vaccine development exceedingly difficult.”

However, a breakthrough came after Rasley and colleagues 
partnered with researchers at the University of New Mexico 
who were studying some of the same vaccine ingredients as the 
Livermore team for a different vaccine platform, one based on 
attenuated Listeria monocytogenes bacteria. Combining data from 
both teams led to the development of a multiple-antigen vaccine 
capable of stimulating strong antibody and T cell responses. The 
two teams found that using a combination of antigen types was 
critical—single antigens alone afforded only partial protection. 
Indeed, when Livermore researchers incorporated multiple 
antigens along with a promising adjuvant into their NLP platform, 
100 percent protection against tularemia was achieved. 

Interestingly, the team found that the survival rate was 
influenced by the vaccination route. All rats vaccinated through 
the nose survived, whereas only 90 percent of those vaccinated 
through muscle tissue did. Rasley speculates that generating a 
robust immune response in the lungs, as nasal delivery does, 
must be particularly important in combating tularemia. Rats 
vaccinated nasally also had less severe disease symptoms than their 
intramuscularly vaccinated cohorts.

“Subunit vaccines commonly consist of proteins from the 
pathogen of interest and molecules called adjuvants that further 
stimulate host immune response, together with materials to 
effectively deliver them in vivo,” explains biologist Nicholas 
Fischer. “With the NLP platform, we can combine all these 
components in a single vehicle, so that all the pieces are delivered 
to every cell that internalizes the NLPs, all at the same time.” He 
adds that NLPs, which range between 8 and 25 nanometers in 
diameter, are the perfect size to take advantage of natural paths 
into cells, particularly immune cells relevant to vaccine delivery. 
Moreover, the researchers have shown that NLP subunit vaccines 
can be freeze dried, stored for months at room temperature, and 
rehydrated without losing their potency.

So far the biggest test of the team’s promising NLP platform has 
been the development of a subunit vaccine for F. tularensis, one of 
the most infectious bacterial pathogens in existence. (See S&TR, 
July/August 2010, pp. 15–17.) F. tularensis can infect an extremely 
broad range of hosts—more than 200 different animal species—and 
has a high mortality rate even at very low infectious doses—as few 
as 10 organisms. This rare but reemerging pathogen is most often 
spread by insect bites or inhaling contaminated particles but is 
also considered a potential bioterrorism agent. Despite decades of 
intensive research, no vaccine approved for widespread use yet exists. 
Leading live-vaccine candidates not only have significant side effects 
but also pose a substantial mutation risk because of their reliance on 
an attenuated bacterium with just a single genetic modification. 

Pathogen Generates Complex Response
Vaccine development is rarely quick or easy, but the path to 

success for a F. tularensis vaccine has been strewn with a greater-
than-usual number of obstacles. Research on such biothreat 
agents requires advanced containment facilities, of which a 
limited number exist. Furthermore, past studies have lacked 
standardization in such areas as the species and genetic strain of 
the test animal and the bacterial strain used, making it difficult 
for researchers to compare with and build on previous findings. 
For example, mice have been used extensively to study immune 
response to F. tularensis but are not an optimal choice because 
of their high susceptibility to all strains, even those that do not 

of both worlds. Subunit vaccines incorporate only those parts of 
a disease-causing microbe that best activate the body’s immune 
system against the pathogen—namely, uniquely identifiable 
marker molecules called antigens. The potential advantages of 
such a vaccine are substantial—less variability between doses, 
fewer adverse or unintended reactions, and more freedom to 
formulate the vaccine for optimal immune response. Of course, 
subunit vaccines present their own challenges for researchers, 
particularly in identifying the right antigen formula to protect 
against a pathogen and finding the most efficient and effective 
method of delivery.

As part of efforts to defend soldiers and first responders against 
bioterrorism and biowarfare, Lawrence Livermore researchers 
have made exciting breakthroughs in subunit vaccine research. 
In vivo rodent studies, for instance, have shown that Livermore’s 
nanoparticle delivery platform increases the efficacy of subunit 
vaccines, making the approach viable for a range of bacterial and 
viral threats. More recently, with support from the Laboratory 
Directed Research and Development Program and the Defense 
Threat Reduction Agency, a team of Laboratory scientists and 
their academic collaborators became the first to demonstrate a 
subunit vaccine capable of providing 100 percent protection in test 
animals against Francisella tularensis, the pathogen that causes the 
dangerous disease tularemia. 

Delivery Makes the Difference
For the past eight years, Laboratory researchers have 

been developing and refining a platform for drug and subunit 
vaccine delivery based on tiny, disk-shaped structures called 
nanolipoproteins (NLPs). These closely resemble the good and 
bad cholesterol particles that move fats through the bloodstream 
and thus are unlikely to be flagged by the immune system as a 
foreign invader. Tests in mice and rats indicate that when antigens 
and other vaccine elements are attached to NLPs through a 
relatively simple process, the resulting vaccine elicits a stronger 
and more targeted immune response than when the components are 
administered separately. (See S&TR, September 2012, pp. 6–13.) 
In a collaborative effort, Livermore scientists have worked with 
numerous universities and companies to develop this approach.

Nanolipoprotein particles (NLPs) are produced by mixing scaffold proteins and lipids with a surfactant. When the surfactant is removed through dialysis, the proteins 

and lipids self-assemble into a disklike structure. The resulting NLP provides a platform for attaching other molecules to produce a potent, safe, and targeted vaccine. 
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Test results indicate the efficacy of a tularemia subunit vaccine formula 

based on the NLP vaccine delivery platform. Up to 100 percent of vaccinated 

rats survived a bacterial challenge, depending on delivery method, as 

compared with the 0 percent survival rate of unvaccinated rats. 
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DESPITE their monolithic appearance, metal parts used in 
 various industries can consist of hundreds of millions of 

distinct microscopic crystalline particles called grains. Each grain 
is made of atoms arranged in a particular orientation, but the grains 
themselves are often randomly oriented relative to one another. 
Metals derive their strength and other mechanical properties 
from their internal structure, and the narrow spaces where 
individual grains meet—grain boundaries (GBs)—are where stress 
concentrates and cracks tend to form and spread.

Despite enormous strides in manufacturing methods to make 
metals stronger and more resistant to corrosion and fracture, parts 
subjected to harsh environments can still crack and ultimately 
fail, sometimes without warning. A leading cause of this failure 
is hydrogen embrittlement (HE), which is triggered by the entry 
and diffusion of hydrogen atoms, typically when the material is 
used in an aqueous or other corrosive environment. Even after a 
century of research, the physical mechanisms of HE are too poorly 
understood to predict HE-induced failure with high confidence. 

A team of researchers, including Lawrence Livermore 
physicist Jonathan Lind, has applied nondestructive, synchrotron-
based radiation to capture three-dimensional (3D) images of 
HE-induced microscopic cracks in metal. The images led the 
scientists to discover the relationship between the crystallographic 
character of metal grains and GBs and their susceptibility—or 
resistance—to HE. The team’s research method, called near-field 
high-energy diffraction microscopy (HEDM), paves the way to 
improved predictions of HE based on the crystalline orientation 
of individual grains. The work, funded by the Department of 
Energy and the National Science Foundation, could also advance 
materials processing methods aimed at limiting cracks and thereby 
strengthening metal parts and extending their lifespans. (See 
S&TR, December 2014, pp. 16–19.)

Hydrogen Molecules Build Up Pressure
Lind explains that hydrogen entering a metal diffuses into 

the GBs, reducing ductility, toughness, and strength and often 
forming cracks that spread. These cracks can cause costly 
component failures requiring expensive repairs in a wide 
range of industries, including petrochemicals, nuclear energy, 
transportation, construction, and medical devices. Even strong, 
advanced alloys are susceptible to damage from HE. For 
example, nickel-base alloy 725, a so-called superalloy and the 
focus of the team’s experiments, is designed for high strength and 
corrosion resistance in the oil-drilling industry, but nevertheless 
the material often exhibits cracks caused by HE. Lind says that 
improved strategies for predicting and preventing HE require 
deeper understanding of the 3D microstructural features that 
are most susceptible to this type of damage. Understanding the 
behavior of these features in the presence of hydrogen is key 

LOOKING DEEP INSIDE A 
SUPERALLOY

              A three-dimensional (3D) rendering  

        visualizes high-energy diffraction microscopy (HEDM)  

        data. The reconstruction required collecting and analyzing more than 

100,000 individual diffraction patterns from many thin slices. Combining the HEDM 

data with a 3D density profile determined with x-ray absorption tomography (XRAT) revealed  

  the path of a crack and its relationship to grain boundaries (GBs) and other microstructure features. 

(top) A two-dimensional (2D) rendering is based on a reconstructed 

1.2-millimeter-diameter slice of HEDM data. Colors represent single grains 

separated by GBs. Areas in white represent cracks. (bottom) This single 

x-ray diffraction pattern from an HEDM measurement was the basis for the 

2D rendering. Individual diffraction spots capture individual grain shapes.  

to improving lifetime predictions and designing HE-resistant 
microstructures.

This effort brought together Lind with colleagues from the 
Massachusetts Institute of Technology (MIT), Argonne National 
Laboratory, Johns Hopkins University, Carnegie Mellon, and Texas 
A&M University. At Argonne National Laboratory’s Advanced 
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“Researchers have been relying on 2D images for a long 
time,” says Lind. “However, crack propagation is inherently a 3D 
problem, and so 3D information about cracks and how they travel 
through a metal is vital.” By analyzing the 3D reconstruction, the 
team identified a set of so-called crack deflection events, where 
the crack deviates markedly from its original path despite having 
a less complicated path along which it could have propagated. 
In one example, a crack initially traveled along a single GB until 
reaching a “triple line,” the intersection of three grains. The 
GB between two of the grains was well aligned with the crack 
plane and therefore appeared to be a likely path along which the 
crack could continue. Nevertheless, the crack proceeded along a 
different GB inclined at a high angle relative to the crack plane, 
which presumably required more energy.

Choosing the Road Not Taken
These surprising findings led the investigators to identify a 

class of GBs that strongly resist the propagation of HE-induced 
cracks—a GB where at least one grain exhibits a low Miller 
index, or a “boundary with low-index plane” (BLIP). The  
Miller index describes a plane of atoms in the lattice of a 
crystalline grain, with a low index indicating that the atoms 
in the plane are more tightly packed than those with a high 
index. Where grains meet, a crack propagating through a BLIP 
would therefore be energetically unfavorable. In effect, BLIPs 
deflect propagating cracks, thereby toughening the material and 
improving its HE resistance. Paraphrasing poet Robert Frost, 
Lind observes, “BLIPs represent the road not taken.”

In the sample, the team identified 10 GBs that appeared to 
deflect cracks and prevent HE damage. Of these, nine fit the 
definition of a BLIP. By forcing the crack path to become more 
tortuous, BLIPs increase the total surface area created by the 
advancing crack, increasing the total work required and impeding 
its progression through a part.

The team’s work is applicable to Lawrence Livermore’s 
mission of stewarding the nation’s nuclear stockpile. A key 
element of that mission is predicting the strength of materials 
under extreme conditions, and findings about BLIPs could 
advance simulations that use high-performance computing to 
better understand how metals behave under extreme pressure. 
(See S&TR, September 2018, pp. 12–15.)

The discovery of BLIPs and the development of 3D 
microstructure mapping could pave the way to improved 
predictions of the behavior of metals affected by HE. In addition, 
special material processing could create stronger GBs to hinder 
crack propagation in metal components regularly exposed to water 
or acid. Lind says, “If a metal could have many more BLIPs, its 
microstructures could better deflect and inhibit cracks and thereby 
significantly increase the lifespan of parts. Therefore, we want 

Photon Source (APS), HEDM was used to nondestructively 
image grain shapes and GBs of nickel-base alloy 725 with high-
energy (50- to 100-kiloelectronvolt) synchrotron x-ray radiation 
from the 1-ID beamline. One of the few in the world specifically 
configured for HEDM measurements, the 1-ID beamline generates 
x rays by accelerating electrons to nearly the speed of light as they 
travel around a circular track. The resulting x-ray beam measures 
approximately 1 millimeter in width and penetrates a sample to a 
depth of several millimeters to several centimeters. 

The researchers examined nickel-base alloy 725 specimens 
measuring 25 millimeters long and 3.8 millimeters in diameter. 
The material was electrochemically charged with hydrogen 
for seven days in solution, then slowly loaded in tension until 
failure, that is, the appearance of numerous cracks. One-
millimeter-diameter cylindrical core samples were machined 
from each specimen’s interior in accordance with the x-ray 
beam’s size requirements. One sample contained the tip of a 
crack that extended across several grains with diameters of 90 to 
125 micrometers. This crack tip—which became the main focus of 
the investigation—showed significant variation in orientation.

Two-dimensional (2D) HEDM diffraction patterns were 
obtained by passing an x-ray beam through the sample and 
capturing the diffracted x rays with a detector—a charge-coupled 
device camera paired with a scintillator that converts x rays to 
visible light. Because the x-ray beam is fixed in space, the sample 
was slowly rotated about an axis perpendicular to the beam 
over several minutes to bring all grains into multiple diffraction 
conditions. The procedure generated a sequence of 150 2D maps 
representing crystallographic orientations, which were then 
integrated into a 3D reconstruction of the microstructure. 

Determining Crack Morphology
The team also took advantage of the beamline’s capability 

for x-ray absorption tomography (XRAT). A form of computed 
tomography, XRAT allows a sample to also be scanned by 
HEDM without repositioning, thus enabling accurate alignment 
of the two data sets. With the XRAT data in hand, the scientists 
could link individual GB information collected by HEDM 
with the XRAT-derived 3D density information on crack 
morphology. Finally, Lind computationally reconstructed all the 
accumulated data from HEDM and XRAT into detailed, virtual 
3D maps, or cross-sectional “slices” of the crack’s twisting tip. 
This reconstruction was accomplished using software called 
IceNine, which was developed in part by former Livermore 
physicist Frankie Li. In addition, the final 3D reconstruction 
using IceNine yielded a virtual cylindrical form containing 
50,000 grains and measuring 1.2 millimeters in height. The 
extremely detailed 3D map revealed the shapes, sizes, and 
crystallographic nature of grains along fracture surfaces.

(above) A possible configuration of GBs with low-Miller-index planes—

known as boundaries with low-index planes (BLIPs)—is shown. With 

their tight packing of atoms, BLIPs impede crack propagation, thereby 

strengthening the material. (below) In contrast, the loose packing of 

atoms seen in GBs with high-Miller-index planes present less of an 

energetic obstacle for crack propagation. 

(above) In a single radiograph from XRAT analysis, the density contrast from 

a crack is readily apparent. (below) More than 1,000 radiographs were used 

to find the 3D shape of this crack in the reconstructed XRAT data.

to develop methods for processing metals to have a higher 
fraction of BLIPs.” The day may not be far off when stockpile 
stewards have further improved simulations and industries such 
as oil drilling have stronger, longer lasting metal parts. 

—Arnie Heller
Key Words: Advanced Photon Source (APS), boundary with low-
index plane (BLIP), grain boundary (GB), high-energy diffraction 
microscopy (HEDM), hydrogen embrittlement (HE), IceNine, Miller 
index, nickel-base alloy 725, x-ray absorption tomography (XRAT).

For further information contact Jonathan Lind (925) 423-8727 

(lind9@llnl.gov).
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  Patents and Awards
In this section, we list recent patents issued to and awards 
received by Laboratory employees. Our goal is to showcase 
the distinguished scientific and technical achievements of our 
employees as well as to indicate the scale and scope of the work 
done at the Laboratory. For the full text of a patent, enter the 
seven- or eight-digit number in the search box at the U.S. Patent 
and Trademark Office’s website (http://www.uspto.gov).Patents

Awards

Cryogenic Pressurized Storage with Hump-Reinforced Vacuum Jacket
Salvador M. Aceves, Francisco Espinosa-Loza, Guillaume Petitpas, 
Vernon A. Switzer, Elias Rigoberto Ledesma-Orozco,  
Victor Alfonso Alcantar-Camarena
U.S. Patent 10,082,246 B2
September 25, 2018

Methods for the Selective Detection of Alkyne-Presenting Molecules 
and Related Compositions and Systems
Carlos A. Valdez, Audrey M. Williams
U.S. Patent 10,082,514 B2
September 25, 2018

Porous Materials via Freeze-Casting of Metal Salt Solutions
Michael Bagge-Hansen, Patrick G. Campbell, Jeffrey D. Colvin,  
Sergei Kucheyev, Thomas E. Felter
U.S. Patent 10,086,431 B2
October 2, 2018

Methods for the Selective Sequestration of Alkyne-Presenting 
Molecules and Related Compositions and Methods
Carlos A. Valdez, Alexander K. Vu
U.S. Patent 10,088,491 B2
October 2, 2018

Systems and Methods for Enhancing Optical Information
Peter Thomas Setsuda DeVore, Jason T. Chou
U.S. Patent 10,088,735 B2
October 2, 2018

Machine Learning on a Mission
More than just a buzzword, machine learning (ML) has become 

part of everyday life—from social media and online shopping to 
search engines and self-driving cars. ML uses computers to learn 
from and make predictions about data. A smarter machine can 
speed up processing and analysis times and improve the accuracy 
of identification and prediction tasks. Lawrence Livermore’s 
national security mission and data-rich environment present 
ample opportunities for exploiting ML tools, often requiring new 
development beyond standard applications. In a broad range of 
applications, most research teams eventually seek ML-driven 
solutions, and many mission-critical programs already rely on 
these technologies. The Laboratory’s go-to ML experts take 
a bidirectional approach, both advancing underlying theory 
and solving real-world problems. The former involves seeking 
mathematical solutions to optimize data sampling while exploring 
ML model interpretability through latent spaces and topological 
data analysis. Real-world applications include the multiscale 
modeling of interactions between cell membranes and specific 
proteins that induce many forms of cancer, as well as predictive 
image analysis for a range of screening scenarios—for example, 
medical diagnosis, airport luggage, and commercial truck cargo.
Contact: Peer-Timo Bremer (925) 422-7365 (bremer5@llnl.gov).

The German Research Foundation (DFG) recently awarded 
Lawrence Livermore engineer Brian Giera with the Mercator 
Fellowship, a three-year visiting professorship at the University 
of Duisburg-Essen, one of Germany’s largest universities. 
Giera’s fellowship is a direct result of a keynote speech he gave 
at the 2017 International Electrophoretic Deposition (EPD) 
Conference in Gyeongju, South Korea. In the speech, he described 
a nanoparticle-based simulation of EPD, a process commonly 
used to coat objects with materials using electrical fields. Once 
his fellowship begins in spring 2019, Giera will collaborate with 
University of Duisburg-Essen Professor Stephan Barcikowski 
on a project to develop a method for uniformly coating neural 
implants with biocompatible metallic nanoparticles, adding his 
computational expertise to the effort. 

As with the U.S. National Science Foundation, the DFG is a 
central, independent research funding organization. The latter 
foundation is supported primarily by the German federal and state 
governments. With the Mercator Fellowship’s stipend, Giera will 
be able to travel to Germany several times each year, for a month 
or two at a time, to conduct research and give lectures. 

Lawrence Livermore chemist Dawn Shaughnessy, whose team 
helped discover six new elements on the periodic table, has been 
elected a fellow of the American Chemical Society (ACS).  
At the Laboratory, Shaughnessy is the group leader for Experimental 
Nuclear and Radiochemistry and the principal investigator for 
the Heavy Element Group. She also led a group in naming heavy 
element 116, dubbed livermorium to honor the Laboratory and 
the city of Livermore, California. She and her team are currently 
working on a method to automate sample preparation and detection 
methods so that radiochemistry measurements will take one minute 
as opposed to up to five minutes when done by hand. The method, 

which will enable her team to analyze a single atom at a time, will 
also be applicable to other applications, including isotope analysis 
and nuclear forensics. The ACS fellows program began in 2009 to 
recognize and honor members for outstanding achievements in and 
contributions to science, the profession, and ACS itself.

The Department of Energy’s (DOE’s) Exascale Computing 
Project (ECP) has named Lori Diachin as its new deputy 
director, effective August 7, 2018. Diachin replaces Stephen Lee, 
who retired from Los Alamos National Laboratory. Since 2017, 
Diachin has been serving as the Computation Directorate’s deputy 
associate director for science and technology at Livermore, where 
she has worked for 15 years. She previously worked at Sandia 
and Argonne national laboratories. She has held leadership roles 
in high-performance computing for more than 15 years. Her 
experience ranges from serving as director of the Laboratory’s 
Center for Applied Scientific Computing to leading multilaboratory 
teams such as the FASTMath SciDAC Institute and directing DOE’s 
HPC4Manufacturing and HPC4Materials programs.

ECP was launched in 2016 as a collaboration between DOE’s 
Office of Science and the National Nuclear Security Administration 
to accelerate the delivery of an exascale computing ecosystem 
critical to DOE missions in national security, scientific discovery, 
and economic competitiveness. To achieve its goal of delivering 
exascale computing capabilities starting in 2021, ECP is developing 
strategies, aligning resources, and conducting research and design 
to deliver an ecosystem that includes mission-critical applications, 
a software stack, hardware architecture, and advanced system 
engineering and hardware components. ECP’s collaboration includes 
experts from six core national laboratories—Argonne, Lawrence 
Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and 
Sandia—along with representatives from industry and academia. 

Livermore’s brain-on-a-chip could 
advance understanding of how the 
brain functions, as well as aid the 
development of antidotes to toxic 
compounds, including chemical 
warfare agents.

Also in April/May
• A gamma-ray spectrometer being sent to 
space will provide insights into the formation 
of Earth and other rocky planetary bodies.

• Preparations for isotope harvesting at an 
advanced radioactive beam facility yield a 
surprising result.

• Using the National Ignition Facility, 
researchers create extreme x-ray and neutron 
conditions to test the nation’s nuclear stockpile.

A Small Chip 
Promises  

Big Payoffs
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