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Ordinarily, the strength and plasticity properties of a metal are 
defined by dislocations—line defects in the crystal lattice whose 
motion results in material slippage along lattice planes1. Dislocation 
dynamics models are usually used as mesoscale proxies for true 
atomistic dynamics, which are computationally expensive to 
perform routinely2. However, atomistic simulations accurately 
capture every possible mechanism of material response, resolving 
every “jiggle and wiggle”3 of atomic motion, whereas dislocation 
dynamics models do not. Here we present fully dynamic atomistic 
simulations of bulk single-crystal plasticity in the body-centred-
cubic metal tantalum. Our goal is to quantify the conditions under 
which the limits of dislocation-mediated plasticity are reached and 
to understand what happens to the metal beyond any such limit. In 
our simulations, the metal is compressed at ultrahigh strain rates 
along its [001] crystal axis under conditions of constant pressure, 
temperature and strain rate. To address the complexity of crystal 
plasticity processes on the length scales (85–340 nm) and timescales 
(1 ns–1 ms) that we examine, we use recently developed methods 
of in situ computational microscopy4,5 to recast the enormous 
amount of transient trajectory data generated in our simulations 
into a form that can be analysed by a human. Our simulations 
predict that, on reaching certain limiting conditions of strain, 
dislocations alone can no longer relieve mechanical loads; instead, 
another mechanism, known as deformation twinning (the sudden 
re-orientation of the crystal lattice6), takes over as the dominant 
mode of dynamic response. Below this limit, the metal assumes a 

strain-path-independent steady state of plastic flow in which the 
flow stress and the dislocation density remain constant as long as the 
conditions of straining thereafter remain unchanged. In this distinct 
state, tantalum flows like a viscous fluid while retaining its crystal 
lattice and remaining a strong and stiff metal.

The plasticity response of a metal depends critically on the pre
sence or absence of dislocations before straining. Shown in Fig. 1 
are the stress–strain curves computed from three different starting 
configurations under three different straining rates: 1.1 × 107 s-1 
(our base rate, referred to as rate ×1), 5.55 × 107 s-1 (rate ×5) and  
2.77 × 108 s-1 (rate ×25); hereafter all rates are quoted in multiples of 
the base strain rate. A defectfree, perfect crystal yields abruptly after 
reaching a stress of 36–37 GPa (blue curves in Fig. 1a). Analysis of 
crystal configurations attained under strain reveals that, regardless of 
compression rate, the perfect metal yields by deformation twinning—
that is, by sudden straininduced reorientation of the crystal lattice 
within bounded volumes of the material7 (Fig. 1b). The same crystal 
with 24 randomly placed voids8 responds similarly. It yields abruptly at 
a lower stress of 16–19 GPa (red curves in Fig. 1a) and undergoes defor
mation twinning (or ‘twins’) at all strain rates that we tested (Fig. 1c).  
In contrast, a crystal with 24 initial dislocation loops placed into the 
same locations as the voids yields gradually along smooth stress–strain 
curves with peak stresses that are both much lower and distinctly 
ratedependent (black curves in Fig. 1a). This crystal does not twin, 
but yields and flows exclusively through motion and multiplication 
of the initial dislocations,  forming dense dislocation networks during 
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Figure 1 | Response to compression as a function of initial defect 
content. a, Stress as a function of strain. Blue, red and black curves were 
computed for the initially perfect crystal, the crystal with voids and the 
crystal with dislocations, respectively, at a temperature of 300 K. Solid, 
dashed and dotted lines correspond to strain rates of × 1, × 5 and × 25, 
respectively. L0 is the initial length of the sample along the z direction 
and L is the length at the time of the measurement. b, From left to right, 
conucleation of embryonic twins, twin propagation and twin growth in 

the initially perfect crystal. c, Dislocation nucleation at voids, nucleation 
of twins on stretched dislocations and twin growth in the crystal with 
voids. d, Initial dislocation loops, loop extension and impingement and 
formation of a dense dislocation network. Dislocations appear as green 
and magenta lines. The twins appear as hollow volumes bounded by 
interfaces coloured grey, red, yellow, magenta or cyan to distinguish the 
parent crystal and four rotational twin variants.
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and soon after yielding (Fig. 1d; Supplementary Video 1). The flow 
response is comparable to that of ductile metals reported in laboratory 
experiments7,9. We therefore observe that, when deprived of initial  
dislocations—as is common practice in atomistic simulations of metals 
subjected to highrate strain—crystal strength is overpredicted by a 
large factor and the metal yields through mechanisms that are quali
tatively different from those when dislocations are seeded in advance. 
Such contrasting differences are not surprising considering that mul
tiplication of existing dislocations entails much lower stress than does 
nucleation of new dislocations in a perfect crystal10. Because no ductile 
metal has ever been obtained dislocationfree in a bulk form, in the 
following we confine our attention to crystals of tantalum seeded with 
dislocations.

Using largescale molecular dynamics simulations, we first deter
mine at which critical strain rate the ability of dislocations to relieve 
stress in tantalum becomes overwhelmed. Figure 2a shows the evo
lution of stress measured during compressive deformation. After 
an initial yield overshoot, the flow stress eventually saturates at all 
strain rates equal to or below ×25. At any higher rate, the flow stress 
continuously rises through the end of compressive strain. Just like 
in the aforementioned perfect crystal and the crystal with voids, 
this strainhardening behaviour is caused by deformation twinning 
(Fig. 2b–d; Supplementary Video 2). In contrast, no twinning is 
observed at rates of × 25 and below (Fig. 1d; Supplementary Video 1).  
Although it is tempting to conclude that × 25 is therefore the maxi
mum rate sustainable by dislocation plasticity alone, the rate at which 
tantalum begins to twin varies depending on several factors, such as 
temperature (Fig. 3a), initial dislocation microstructure (Extended Data 
Fig. 1) and strain trajectory11 (Methods; Extended Data Figs 2 and 3).  
We further observe (data not shown) that the strain rate at which 
 twinning sets in also depends on the sign of strain (compression or 
tension) and the strain axis.

Although the transition to twinning is seemingly controlled by a 
complex interplay of the factors listed above, we observe a simple condi
tion for the onset of twinning: it is triggered whenever the stress–strain 
trajectory, however complex, reaches a specific value of stress, which we 
refer to as a twinning threshold. The existence of a twinning threshold 
is in full agreement with the notion of critical resolved shear stress that 
is frequently encountered in the literature on crystal plasticity12, but 
the applicability of which to deformation twinning in metals is still 
debated. In the model of tantalum examined here (Methods), twinning 
is observed whenever uniaxial stress reaches about 8 GPa, and this 
value is only weakly temperaturedependent if at all. Under [001] com
pression, this uniaxial stress amounts to about 1.9 GPa of shear stress 
resolved on eight active twinning systems of the bodycentredcubic 
crystal (Methods). In simulations in which strain rate or temperature 
are varied to gradually approach the twinning transition,  dislocations 
have ample time to multiply and their density reaches around 1017 m-2. 
This limiting value closely matches a prediction given for the  maximum 

dislocation density a crystal can sustain before collapsing13 (see 
Methods and Extended Data Fig. 4 for more details on this dislocation 
density limit).

What happens once twinning is triggered depends on the initial 
material state14 and on the strain trajectory, both before and after 
twinning. For example, at a rate of × 25 and temperature of T =  300 K, 
and at a rate of × 5 and T =  50 K, we observe that twinning is triggered 
momentarily when the stress–strain trajectory first crosses 8 GPa, but 
the newly nucleated (or ‘embryonic’) twins subsequently recede once 
the flow stress drops below this threshold value (Figs 1d and 3c). Very 
different defect microstructures develop at higher rates at T =  300 K 
(Fig. 2d) or at lower temperatures at a rate of × 5 (Fig. 3b) at which 
the twins grow rapidly, filling large fractions of material volume,  
impinging on each other and even suffering secondary twinning (twins 
inside twins). Yet another distinct scenario is observed in simulations in 
which the twinning threshold is reached by slowly increasing (ramping) 
the strain rate at a constant temperature or, alternatively, by continu
ously cooling the metal while it is strained at a constant rate. Once 
the stress reaches about 8 GPa, numerous twins nucleate but do not 
grow and remain embryonic, presumably constrained from further 
growth by the dense dislocation networks that are established by then 
(see Methods and Extended Data Fig. 3 for more detail on simulations 
under continuous cooling). The fact that the threshold stress is nearly 
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Figure 2 | Response to compression as a 
function of strain rate. a, Stress on a logarithmic 
scale as a function of true strain computed in 
molecular dynamics simulations of specimen 
compression at different strain rates (see colour
coded labels) and a temperature of 300 K.  
b, A snapshot of a simulation taken immediately 
after yield showing embryonic twins in the 
simulation performed at a rate of × 50. c, A later 
snapshot from the same simulation showing twin 
propagation. d, An even later snapshot in which 
the twins have grown to span the simulation 
volume. Colouring of dislocation lines and twin 
interfaces is the same as in Fig. 1.
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Figure 3 | Response to compression as a function of temperature. 
a, Stress as a function of true strain computed in molecular dynamics 
simulations of specimen compression at different temperatures (see 
colourcoded labels) at a rate of × 5. b, A snapshot extracted from a 
simulation at T =  25 K depicting welldeveloped twins surrounded 
by dislocations. c, A snapshot extracted from a simulation at T =  50 K 
showing a dense dislocation network but no twins. Colouring of lines and 
interfaces is the same as in Fig. 1.
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independent of the strain conditions is explained by our observation 
that twinning nucleation always occurs by stressdriven extension of 
screw dislocations, as has previously been suggested15,16. However, in the 
presence of other possible pathways for the initiation of twinning, such 
as grain boundaries or triple lines in polycrystals, the twinning threshold 
may have a different value or may even be impossible to define.

We now turn to our simulated strain trajectories in which stress 
stays below the threshold and twinning is not triggered. We find that 
any such trajectory leads to an ultimate steady state of material flow 
that is then maintained indefinitely as long as the strain conditions 
(strain rate, temperature and strain axis) remain unchanged. In Fig. 4  
we present substantial evidence that, no matter how the final strain 
conditions are attained—by straining at a constant rate throughout, 
in a sequence of rate jumps or under a continuously varying rate—the 
state that the material ultimately attains is manifestly pathindependent. 
For  example, the four different types of strain trajectory that lead to the 
same limiting rate of × 25 clearly converge to the same stress (black lines 
in Fig. 4a) and dislocation density (black lines in Fig. 4b), the values of 
which depend on only the final strain rate. We further show in a ‘metal 
kneading’ simulation (Methods; Extended Data Fig. 5; Supplementary 
Video 3) and other analyses that flow stress, dislocation density and 
other more detailed quantitative characteristics of dislocation micro
structures remain constant over arbitrarily large compressive strains 
(Methods; Extended Data Figs 6–8). We therefore conclude that the 
ultimate ‘state of flow’ that is predicted remains steady as long as strain 
conditions remain unchanged.

We regard the flowing metal as an open thermodynamic system 
maintained at a constant rate of energy dissipation in which new 
mechanical energy is supplied by strain, then converted through dislo
cation multiplication, annihilation and motion into heat and eventually 
collected and removed by the thermostat. In this steady state, dislo
cation multiplication is exactly balanced by dislocation annihilation.  
A thermodynamic potential and an equation of state17 should therefore 
exist that uniquely relate the internal state variables, such as  saturated 
flow stress and saturated dislocation density, to the external strain con
ditions, that is, temperature, pressure, strain rate and axis. Shown in  
Fig. 5a are two such equations of flow state, for the flow stress and 

the flow density, computed in our molecular dynamics simulations as 
functions of strain rate while holding all other control parameters fixed.

Straining rates and dislocation densities encountered in our simu
lations are common to highrate compression experiments18,19. 
However, direct comparisons to such dynamic tests are uncertain owing 
to their complex and largely unknown strain trajectories that are far 
from stationary20,21 and only indirectly inferred. Here, we opted for 
fully controlled simulations in which intrinsic plasticity  properties are 
 computed directly, in the most straightforward manner  possible, akin 
to the standard lowrate (10-5 s-1 to 102 s-1) laboratory tests of crystal 
plasticity. It remains to be shown whether it is sensible to compare our 
predictions to lowrate experiments, given the orders of  magnitude 
 difference in the strain rates. For instance, although the notion of 
 saturated flow is not entirely new22–24, it is unclear how our prediction 
of a steady flow state matches up with the expectation of ‘hardening 
forever’ that prevails in the lowrate literature. Few lowrate compres
sion experiments reach strains of order unity, which are  necessary 
to observe saturation, and those that do are commonly affected by 
extrinsic factors that conceal the true response, including barrelling 
or necking and rotation of the strain axis25–27. However, in at least one 
experiment, in which strain conditions remained unchanged over very 
large strains28, saturated flow at a manifestly constant stress has been 
observed in singlecrystal molybdenum (a close cousin of tantalum) 
compressed along the same [001] axis at a rate of 10-3 s-1. We therefore 
regard our prediction of a saturated flow state as a tantalizing, general 
hypothesis that merits further scrutiny.

The above comparison draws attention to a more general question: 
whether the physics of metal plasticity at high rates differs from the 
much studied mechanisms that define plasticity under quasistatic 
strain conditions. We do observe certain differences. As shown in  
Fig. 5a, our predicted saturated flow stress and saturated dislocation 
density are markedly more ratedependent than the lowrate experi
mental data for tantalum would suggest7. Another notable difference 
concerns the Taylor hardening equation that relates flow stress τ to 
dislocation density ρ as τ αµ ρ= b , where μ and b are the shear 
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Figure 4 | Attaining a path-independent flow state. a, Stress–strain 
response computed in molecular dynamics simulations along four 
different types of strain trajectory at T =  300 K: solid lines correspond to 
compression at constant rates, dotted lines show stress relaxations after 
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colours and types match the stress–strain trajectories depicted in a.
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Figure 5 | Flow stress and dislocation density at T = 300 K. a, Saturated 
flow stress τf (filled circles) and saturated flow density ρf (open squares) as 
functions of strain rate ε� . b, τf versus ρf attained at different rates (filled 
circles). The black dashed line is the Taylor equation with coefficient 
α =  0.3 taken from experiment9; this line has a slope of 1/2 (as indicated). 
The solid red line is a Taylor equation corrected for the presence of strong 
ternary junctions, the fraction of which increases with increasing strain 
rate (Methods). c, Stress–strain response computed in molecular dynamics 
simulations at different rates (solid lines; see colourcoded labels), and 
stress predicted from the concomitant dislocation density using the  
Taylor equation along the same strain trajectories (dotted lines).
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 modulus and the magnitude of the Burgers vector, respectively, and α 
is a dimensionless constant believed to reflect the strength of disloca
tion interactions29. Lowrate straining experiments7 on  singlecrystal 
tantalum show that the Taylor equation holds reasonably well at α =  0.3. 
However, extrapolated to the considerably higher values of saturated 
flow density ρf that are observed in our simulations, the lowrate 
 empirical equation predicts a saturated flow stress τf that is markedly 
lower than our simulation results (Fig. 5b). To approximately fit our 
molecular dynamics simulation data, the Taylor coefficient must be 
higher, α =  0.45. Furthermore, as can be seen in Fig. 5b, at the  highest 
rates the flow stress deviates upward from the standard squareroot 
prediction (black dashed line with a slope of 1/2 in the logarithmic 
plot). We relate these discrepancies to the recently discovered ternary 
junctions that tie together three dislocations and thus are much 
stronger than the ordinary binary junctions that hold together only two 
dislocations30. As detailed in Methods, the fraction of strong ternary 
junctions is observed to grow markedly with increasing strain rate, 
which may explain both the increased hardening coefficient α and the 
upward deviation from the standard Taylor relationship.

In our simulations, deviations from Taylor hardening are even more 
pronounced during the transient strain regime that leads to the steady 
flow state (Fig. 5c). Here, the flow stress clearly outpaces the density 
 evolution to the extent that at the highest strain rate of × 25 the flow 
stress shows no hardening at all and appears to reach saturation much 
sooner than does the dislocation density. With decreasing strain rates, 
however, the flow stress and the flow density appear to increase and 
 saturate more and more in lock step. This trend points to an increas
ingly higher resistance to dislocation motion with increasing strain 
rates, owing to two sources: greater dislocation–lattice  coupling 
and increased background (or ‘forest’) resistance resulting from the 
increased  frequency of dislocation collisions. At high rates, lattice 
 resistance  dominates in the early stages of straining when dislocations 
are relatively scarce (and dislocation collisions are infrequent), and forest 
resistance catches up, but with a notable delay, as dislocations multiply.

Apart from the aforementioned quantitative differences, in our 
molecular dynamics simulations the dislocations behave as expected at 
low strain rates: (1) they move in a stopandgo fashion,  remaining rela
tively motionless against obstacles (junctions and selfpinning cusps31) 
for periods of time with intermittent bursts of faster motion; (2) the 
distribution of the orientation of dislocation lines is non uniform and 
dominated by screw lines with orientations nearly parallel to their 
Burgers vectors (see Methods); and (3) the average dislocation  velocities 
range between 1 m s-1 and 60 m s-1, placing the dominant screw dislo
cations into the same temperature and stressactivated motion regime 
as expected at low rates32. We thus observe that, quantitative differ
ences notwithstanding, the basic mechanisms of  dislocationmediated 
 plasticity in tantalum seem to remain the same for strain rates from the 
quasistatic to dynamic shock regime, that is, over the full range of 14 
decades of experimentally accessible strain rates. If this proves to be 
the case, then simulations of the kind reported here present a distinct 
and exciting opportunity to examine and understand the fundamental 
atomistic mechanisms that underlie metal plasticity in unprecedented 
detail (Extended Data Fig. 9; Supplementary Video 4).

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Molecular dynamics (MD) simulations. The key challenge for MD simula
tions of phenomena as complex as crystal plasticity is their high computational 
costs, which place severe limits on accessible length scales and timescales. Here 
we utilize some of the world’s leading HPC facilities to push beyond these scale 
limits. Simulations were performed using the opensource code LAMMPS33 on 
brickshaped fragments of tantalum single crystals seamlessly embedded into an 
infinite crystal under threedimensional periodic boundary conditions. Interaction 
among tantalum atoms was modelled with the embedded atom method (EAM) 
interatomic potential34. The initial aspect ratio of the brickshaped simulation 
volume was 1:2:4, with dimensions ranging from Lx ×  Ly ×  Lz =  128a0 ×  256a0 ×  
512a0 (about 33 million atoms) to Lx ×  Ly ×  Lz =  256a0 ×  512a0 ×  1,024a0 (about 
268 million atoms), oriented along the principal [100], [010], [001] axes of the 
bodycentredcubic lattice, respectively (a0 =  0.33 nm is the lattice constant of 
tantalum at ambient conditions). The crystal was compressed either at a constant 
rate or at a variable ‘true’ rate
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T

along its initially longest [001] axis Lz, while its two lateral dimensions Lx and Ly 
were left to expand to maintain the ‘xx’ and ‘yy’ components of the mechanical  
stress near zero. Most straining simulations were continued until the ‘longest’ 
dimension Lz was compressed to onequarter of its initial size, by which time Lx 
and Ly had almost doubled, thus keeping volume and pressure nearly constant 
throughout the simulation. Temperature was maintained constant using a Langevin 
thermostat with the damping parameter set to 10 ps. Everywhere in the text by 
‘stress’ we mean the uniaxial compressive stress σzz that develops in the model 
crystal in response to strain along its [001] z axis.
In situ computational microscopy. MD simulations of crystal plasticity  generate 
enormous amounts of data: a simulation of the kind reported here generates about 
5 exabytes (1 exabyte =  1018 bytes) of atomic trajectory data in just one day on 
the Sequoia supercomputer35, an amount comparable to the estimated world
wide storage capacity of Google. To be useable, MD data must be compressed to 
reduce its size and to recast it into a form that a human can grasp and comprehend.  
Here we rely on recently developed methods of in situ computational microscopy 
to identify and precisely characterize extended defects in crystals4,5 and to reduce 
the amount of data by orders of magnitude. In addition to the standard local atom 
filtering techniques, we use the dislocation extraction algorithm (DXA)5 and the 
grain segmentation algorithm (GSA) to reveal structural defects in simulated 
crystals and to reduce the amount of data to deal with by orders of magnitude. 
The DXA accurately traces and indexes the dislocation lines and builds a concise 
network representation of the crystal microstructure identical to the one used 
in the mesoscale ‘discrete dislocation dynamics’ method. The newly developed 
GSA automatically partitions the atomistic crystal into regions of similar crystal 
orientation (grains) and generates a geometric representation of the interfaces 
delineating the grains, thus identifying any twinning. This conversion from the 
fully atomistic model to a highly reduced description of the defect microstructure 
is performed at regular time intervals during the MD simulation and enables us to 
follow the motion and reactions of dislocations, the onset of twinning and other 
important events with an arbitrary degree of detail. Defect microstructures shown 
in Figs 1–3, Extended Data Fig. 9 and Supplementary Videos 1–4 were rendered 
with the program OVITO4.

As an example, Extended Data Fig. 9 depicts several important events in the 
life of dislocations detected and rendered using the ‘atomic strain’  calculation 
function available in OVITO. The atomic strain function requires the user to 
supply two atomistic configurations, initial and final, from the same  simulated 
trajectory. When invoked, this function compares positions of atoms in the 
two supplied  configurations and computes a local peratom measure of the 
von Mises shear strain for every atom. To see where atomic scale slip has taken 
place, the user can select for subsequent rendering only the atoms whose shear 
strain is above a userdefined threshold and delete all other atoms for clarity. To 
 generate the snapshots shown in Extended Data Fig. 9, the ‘highstrain’ atoms are 
 juxtaposed with two dislocation networks extracted from the same initial and 
final  configurations using the DXA analysis tool in OVITO (DXA requires only 
one atomic  configuration). The snapshots are extracted from the MD simulation 
shown in Supplementary Video 4.
Twin nucleation events. Despite similar eventual outcomes—twinning—the 
 perfect, defectfree crystal (crystal ‘A’) and the crystal with voids (crystal ‘B’) 
respond to identical strain conditions differently. Whereas crystal A twins at a 
peak stress that is nearly rateindependent (36–37 GPa), crystal B twins at a lower 
peak stress that depends more noticeably on the strain rate. Twinning initiation in 

crystal A bears signatures of lattice instability: twins are nucleated  homogeneously, 
springing up simultaneously and randomly anywhere in the crystal  volume. The 
small, fishshaped twin embryo seen in the leftmost frame in Fig. 1b consists of 
subparticles of four different colours: all four rotational twin variants co nucleate 
simultaneously, perhaps owing to the high symmetry of the [001] strain axis. 
Subsequently, numerous twins rapidly fill much of the crystal volume (middle 
frame in the same sequence) and grow seemingly larger in the later stages of 
 straining (right frame). In contrast, twinning in crystal B is a twostage process. 
First, dislocations are emitted from the preexisting voids36 (leftmost frame in  
Fig. 1c); and second, twins heterogeneously (at preferred positions) nucleate on the 
emitted dislocations according to Sleeswyk’s mechanism15,16 (middle frame of the 
same sequence). Moderate rate dependence of the yield stress in the crystal with 
voids reflects an activated timedependent nature of dislocation nucleation from 
the voids. Following initial emission of dislocation loops from the voids, formation 
of embryonic twins does not appear to be temperature or stressactivated, but 
occurs as soon as the loops draw sufficiently long screw segments.
Yield behaviour depends on initial dislocation sources. In Extended Data Fig. 1 
we show stress–strain curves computed in three MD simulations of compressive 
straining at the same rate × 25, but starting from three different initial configu
rations of dislocation sources (loops). The blue curve is the response of a crystal 
with four hexagonshaped loops randomly placed in the simulation volume, one 
loop for each of the four different Burgers vectors of the 1/2〈 111〉  type. The loops 
are of the vacancy type and approximately 8 nm in diameter corresponding to 
an initial dislocation density of about ρ0 =  1.5 ×  1014 m-2. The red curve is the 
response of a crystal with 24 loops of the same type and size randomly placed in 
the volume, six loops per Burgers vector (ρ0 =  9 ×  1014 m-2). The black curve is the 
response of a crystal with four initial loops of six times larger diameter, one loop 
per Burgers vector (ρ0 =  9 ×  1014 m-2). Even though there is some dependence on 
the loop size (compare red and black curves), yield stress is far more sensitive to the 
initial dislocation density (compare blue and black curves). Yielding of the crystal 
with the lower initial dislocation density entails nucleation and growth of twins 
concomitant with strain hardening, whereas two other crystals of the higher initial 
dislocation density yield by dislocation multiplication and motion alone, produce 
no twins and exhibit no strain hardening. Our simulations suggest the following 
interrelationship between the initial source density and the yield behaviour: the 
lower the initial density the longer time it takes for the dislocations to multiply 
and to prevent twinning14. Conversely, in the unrealistic hypothetical limit of zero 
initial dislocation, density twinning is perhaps unavoidable (see Fig. 1b, c).
Detection of twinning transition. As can be seen from Fig. 2a, at temperature 
300 K the crystal does not twin when compressed at rate × 5. However, the plas
ticity response of tantalum depends sensitively on temperature as illustrated by 
the stress–strain curves shown in Fig. 3a that were obtained in MD simulations 
of compressive straining at the same rate × 5 but at temperatures ranging from 
5 K to 1,000 K. In addition to a marked increase in the yield and flow stress with 
decreasing temperature, the response curves at 25 K and still lower tempera
tures are qualitatively different from the stress–strain curves obtained at higher 
 temperatures: here again, hardening observed past yield signals twinning. Using 
the GSA we confirmed that under compressive strain at rate × 5 the crystal does 
indeed twin at 25 K (Extended Data Fig. 2), and at 10 K and 5 K. This observation is 
in qualitative agreement with experimental data showing that strain rates at which 
twinning is observed increase with increasing temperature. We therefore expect, 
with all other conditions fixed, that a separatrix exists in the rate–temperature 
plane delineating two essentially different modes of plastic response: ‘dislocations 
only’ and ‘dislocations +  twins’.

It is possible to establish where the separatrix is by running a series of MD 
simulations at a fixed temperature and many different rates, as we did to obtain the 
data shown in Fig. 2a. Alternatively, the same twinning transition can be searched 
for at a fixed rate, by running simulations at many different temperatures, as we 
did to obtain data for Fig. 3a. However, both approaches are computationally 
expensive and may not be sufficiently accurate: the accuracy of pinning down 
the  twinning transition depends on the spacing of the rate–temperature grid and 
it is not necessarily known in advance where in the rate–temperature plane to 
focus the computational effort. Furthermore, occurrence of twinning depends on 
 various extrinsic factors such as variations in the initial dislocation microstructure 
and on a multitude of possible timedependent strain trajectories. To avoid such 
uncertainties, we  identify an intrinsic twinning transition with the minimal rate 
at which twinning is triggered in the limit of adiabatically slow rate ramping at a 
 constant  temperature. Conversely, the same intrinsic transition can be defined as 
the  minimal  temperature at which twinning is not observed in the limit of adia
batically slow cooling under a constant strain rate. Although it is not practically 
possible to perform a simulation (or experiment) over an infinitely long time, 
the above definitions suggest two efficient protocols for detecting the twinning 
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transition. It can be more computationally efficient and/or accurate to detect and 
locate a twinning transition by: (1) raising the strain rate as slowly as possible at a 
fixed temperature or (2) cooling the crystal as slowly as possible at a fixed strain 
rate. In both methods, rate or temperature ramping should start on the ‘disloca
tions only’ side of the separatrix. Obviously, the better one knows (or anticipates 
to know) where to expect the transition, the more accurately the transition itself 
will be located.

We tried both simulation protocols to detect the twinning transition tempera
ture at a fixed rate and to detect the twining transition rate at a fixed temperature. 
An example is presented in Extended Data Fig. 3, in which the twinning  fraction—
the fraction of atoms inside all twin particles computed using the GSA—is plotted 
as a function of temperature. A robust increase in the volume fraction of twins 
observed at temperatures of about 30–50 K signals the onset of twinning. The 
 twinning transition temperature estimated from this simulation is consistent with 
the data presented in Fig. 3a, in which twinning was observed at 25 K but not at 
50 K. Furthermore, continued cooling causes the flow stress to increase and to 
reach the familiar threshold value of about 8 GPa in the same range of temperatures 
in which the twin fraction begins to increase (compare to Fig. 2a). A continuous  
increase in the strain rate at a fixed temperature is also observed to result in 
twinning; however, the twin fraction remains small, which makes detection and 
quantification of the twinning transition less robust. Visual analyses reveal that, 
under both continuous cooling and continuous rate ramping, twins nucleate once 
a sufficiently high stress of about 8 GPa is reached, but do not grow and remain 
embryonic even as the stress continues to increase. We leave it to future analysis 
to establish exactly why the twins remain undersized, but our current  hypothesis 
is that twin growth is somehow arrested by very dense dislocation networks 
that develop in simulations under continuously increasing strain rates or under 
 continuous cooling.

Taken together, the simulation data presented here and in the main text (Figs 2  
and 3) indicate that, no matter how the twinning transition is induced—under 
constant rate and temperature, by rate ramping or by continuous cooling—the 
stress at which twins first appear is only weakly dependent on temperature and 
rate. In fact, to zeroth order, stress to trigger twinning can be taken as approxi
mately constant, about 8 GPa, within the range of strain rates and temperatures 
that we explored in our simulations. Given the Schmid factor of eight twinning 
systems active under [001] compression, / = .1 18 0 2357 , the resolved (shear) 
threshold stress that triggers twinning in our model of tantalum is estimated to be 
1.9 ±  0.3 GPa. This parameter can be regarded as a material constant—the critical 
resolved shear stress for twinning12—in conditions when twinning is initiated on 
preexisting screw dislocations via the mechanism suggested in refs 15 and 16 as 
observed in our simulations.
Post-straining reduction of dislocation density. Under the highest strain rates 
explored in our simulations, the dislocation density reaches extreme levels of about 
1017 m-2 consistent with an earlier estimate for the limiting density13. Although 
dislocation densities of such magnitude have been reported, invariably, TEM 
 experiments reveal only ex situ (postmortem) density whereas our data pertains 
to in situ (during straining) density. Owing to several mechanisms of density 
 relaxation (recovery) coming into play after straining, the ex situ density can be 
much lower than the in situ density. In highrate straining experiments in which 
in situ dislocation density reaches extreme values, postmortem density relaxation 
can be particularly large and should not be ignored. Here we present computational 
experiments intended to illustrate, within our limited computational resources, two 
factors known to contribute to poststraining density reduction.

The strain rates explored in our simulations are common to highrate com
pression experiments; however, strain trajectories encountered in such dynamic 
tests are timedependent, highly convoluted or even unknown, making direct 
 comparisons with our fully controlled MD simulations impossible at present. What 
is known, however, is that fast multiplication and motion of dislocations under high 
stress generates much heat that has little or no time to disperse during straining, 
thus greatly affecting the material response20,21. Owing to computational limita
tions, it is impossible at present to simulate such dynamical tests on their realistic 
timescales and length scales, but we can try to gauge the possible effects of rapid 
heat production. Extended Data Fig. 4 shows the kinetics of density relaxation 
following two different strain trajectories, both ending at the same rate of × 75. 
The upper curve represents kinetics of density relaxation following isothermal 
straining at rate × 75, just below the twinning transition at T =  300 K. It is in this 
simulation that the dislocation density reaches its highest level of 1.1 ×  1017 m-2 
while still not triggering twinning. The lower curve represents density relaxation 
following adiabatic compression at a rate linearly increasing from 0 to the same end 
rate of × 75. In the isothermal relaxation simulation, temperature was maintained 
close to 300 K, whereas in the adiabatic simulation heat generated during plastic 
straining was retained in the system resulting in temperature rising to 1,350 K. 

Qualitatively, the two kinetics can be expected to bound the (unknown) material 
response to straining at rate × 75 because experimental highrate tests are neither 
fully isothermal nor fully adiabatic.

As soon as straining is stopped, stress is observed to relax to zero over just a few 
tens of picoseconds in both isothermal and adiabatic simulations. Over the same 
short time interval, the dislocation density rapidly decreases owing largely to fast 
straightening (springing back or recoiling) of dislocations that were previously 
bowed out under stress. Following this initial reduction, more extended (lazy) 
relaxation kinetics commences, manifesting itself in a continuing downward slope 
of dislocation density plotted as a function of the logarithm of time. Assuming 
continued relaxation to follow the same lazy, stretched exponential kinetics all 
the way to its infinitetime asymptotic value of zero37, the dislocation density can 
be expected to decrease by an additional order of magnitude on the macroscopic 
timescales of seconds and days.

Still another factor that can reduce dislocation densities observed in experiment 
is prepping strained specimens for subsequent TEM observations. Here we emulate 
the effect of specimen thinning by interrupting the isothermal density relaxation 
simulation, replacing the periodic boundary conditions along the x axis with 
freesurface boundary conditions and continuing isothermal density relaxation, 
but now with two opposite faces of the simulation volume exposed to vacuum. At 
the time of the switch, the dimension of the crystal along its x axis is 83 nm, which 
is appropriately close to a typical thickness of an electrontransparent film used 
in TEM experiments. As seen from the plots, reduction in the dislocation density 
during poststraining relaxation in the ‘thin film’ is noticeably greater than in the 
‘bulk’ 3D periodic crystal.

Computational experiments discussed in this section, however simple 
and limited in their time horizon, generally substantiate the expectation that 
 volumeaveraged dislocation densities observed postmortem in crystals subjected 
to extremerate compression should be substantially lower—perhaps by an order 
of magnitude if not more—than the in situ densities.
Additional simulations and analyses confirm that the flow state is stationary. 
In the MD simulation that we refer to as ‘metal kneading’, a brickshaped volume 
of tantalum crystal with initial dimensions x:y:z =  1:2:4 is kneaded like a piece 
of dough. First, the brick is compressed along its longest, z dimension until its 
dimensions become 2:4:1 (owing to expansion in its two lateral dimensions, the 
volume of the brick remains nearly constant under compression, reflecting the 
volumepreserving nature of metal plasticity). Then, another simulation starts in 
which the same brick is compressed along its now longest y axis so that its final 
dimensions become 4:1:2. After completing the second compression cycle, the 
brick is compressed along its now longest x axis, and so on. Stress–strain curves 
shown in Extended Data Fig. 5 demonstrate that flow stress remains the same over 
four such consecutive compression cycles (see Supplementary Video 3). Although 
not shown in the plot, the dislocation density is also observed to remain unchanged 
along the same strain trajectory, except for short transients in the beginning of 
each compression cycle. We continued the metal kneading process well beyond 
the initial four cycles depicted in Extended Data Fig. 5 and observed no changes 
in the flow behaviour.

To further confirm that the saturated flow observed in our MD simulations 
is indeed stationary, we examine evolution under strain of other, more detailed 
characteristics of material state, namely dislocation network topology and dislo
cation line geometry.

Aside from occasional disconnected loops, dislocations in a crystal form 
 networks in which junction nodes join together three or more dislocations. In 
close analogy with electric circuits, dislocation networks conserve vector  current: 
(a) the Burgers vector is conserved along each dislocation line and (b) the Burgers 
vectors of dislocations joined at each node sum to zero. As a rule, bulk metals 
already contain dislocation networks in their asgrown state. When a crystal is 
strained,  dislocations multiply and collide increasingly more frequently,  resulting 
in a  gradual increase in the dislocation network density; this is precisely what we 
observe in our MD simulations. It has been tacitly assumed over the years that every 
 dislocation network is built from the same basic unit—a junction in which two 
parent dislocations merge together to form a third (product)  dislocation. However, 
the recent discovery of dislocation multijunctions has led to  reconsideration of 
this basic tenet, bringing to the fore a new object—a ternary junction in which 
three dislocations merge together to form a forth dislocation. The importance of 
ternary junctions is in their strength: ternary junctions hold dislocations together 
much more strongly than do ordinary (binary) junctions30. If present in substantial 
concentrations, ternary reactions should add considerably to the overall network 
resistance to dislocation motion and thus raise the flow stress.

To track evolution of dislocation networks along our simulated strain trajec
tories, we developed an algorithm consisting of a sequence of unit topological 
operations that deconstruct an arbitrary dislocation network into its constituent 
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binary and ternary junctions. In Extended Data Fig. 6 we show the numbers of 
(ordinary) binary junctions and ternary junctions computed for a sequence of 
network configurations observed along a single strain trajectory at our base rate × 1 
(1.11 ×  107 s-1). As expected, initially there are no junctions of either type bceause 
our initial configuration contains only isolated dislocation loops. Then, as soon 
as dislocations multiply sufficiently to start intersecting each other, the number 
of binary junctions begins to increase rapidly, followed closely by an increase in 
the number of ternary junctions. Further confirming a stationary nature of the 
flow state, both densities appear to saturate at a strain of about 0.4. Two aspects of 
network formation kinetics are noteworthy: (1) the initial increase in the density of 
ternary junctions trails closely behind the kinetics of ordinary (binary)  junctions, 
which makes sense because the ternary junctions are expected to result from  
collisions of third dislocations with binary junctions that are already present; and 
(2) in the stationary (saturated) flow state, the density of ternary junctions becomes 
as high as that of the ordinary junctions. The latter observation is  particularly 
 startling and suggests that the overall strength of a fully formed (saturated) 
 dislocation network may be largely defined by the ternary junctions, owing to 
their greater strength.

It is of interest to see if and how network composition in the saturated state 
depends on the strain rate. In Extended Data Fig. 7 we show the numbers of binary 
and ternary junctions found within the dislocation network evolving along a strain 
trajectory that begins at strain rate × 25 and then on reaching strain about 0.55 
jumps to rate × 50, followed by another jump to rate × 75 at strain about 0.85. 
Clearly, the numbers of junctions of each type (binary and ternary) closely follow 
the strain trajectory even if it takes some time (and strain) for the network com
position to settle after each rate jump. It is equally clear that the fraction of ternary 
(multi) junctions increases with the increasing strain rate, reaching 57% at rate 
× 75, which, as we observed, is the highest rate the metal sustains at T =  300 K 
without triggering twinning. Given that multijunctions are markedly stronger 
than the regular binary junctions and can contribute a great deal to strain  (forest) 
 hardening, an interesting topic for further study is why the fraction of multi 
junctions increases with increasing rate.

We relate the upward deviation in MD data for the saturated flow stress from 
a straight line of slope 1/2 (Fig. 5b) to the presence of multijunctions increasing 
with the strain rate. Normally taken to be constant, the Taylor hardening  coefficient 
α can be corrected upward from its lowrate experimental value of α =  0.3  
(ref. 7) by a factor that accounts for the fraction of strong multijunctions observed 
at each strain rate in our MD simulations (inset in Extended Data Fig. 7). Plotted in  
Fig. 5b as a red line is the socorrected Taylor equation, based on a simple  geometric 
mixing rule summing together contributions of binary and ternary junctions to 
the flow stress. The relatively narrow ranges of the flow stress and flow density 
explored in our simulations and our use of logarithmic coordinates make it difficult 
to see that the two lines in Fig. 5b are not parallel. Yet, when extrapolated to much 
lower quasistatic strain rates (dislocation density of about 1012 m-2), at which 
the fraction of multijunctions is expected to be nearly zero, the correction factor 
becomes unity and the two lines should intersect.

Perhaps the simplest and certainly most common characteristic of dislocation 
line geometry is the socalled character angle, or simply the character, defined as 
the angle between the Burgers vector of the dislocation and the direction of its line 
tangent. Disregarding the sign of its cosine, the character angle varies between 
0° (pure screw character) and 90° (pure edge character). Dislocation characters 
between these two extremes are often referred to as mixed. In Extended Data Fig. 8a  
we show several histograms of the cosine of the character angle computed for a 
series of dislocation configurations encountered in the same straining simulation 
at rate × 25. Extended Data Fig. 8b depicts the same evolution in terms of the ratio 
of nearscrew (0.99 <  cos(θ) <  1.00) to nearedge (0.00 <  cos(θ) <  0.01) characters, 
with letters marking the instances where the character angle distributions shown 
in Extended Data Fig. 8a were computed. Because the character distributions  
are sharply peaked, the histograms are plotted on a base10 logarithmic scale  
along the vertical axis. The histograms are normalized so that, when integrated  
over the cosine of the character angle from cos(θ) =  0 (pure edge) to cos(θ) =  1 
(pure screw), the integral of the exponentiated histogram is equal to the total 
length of all dislocations contained in the simulation volume. Being equal to the 
product of dislocation density and simulation volume, the total length of dislo
cations increases rapidly through the transient and then saturates on reaching 
strain about 0.4.

The distribution is sharply peaked at zero cosine (near edge character) in the 
initial configuration A because our initial sources are hexagonshaped prismatic 
loops with the normal vectors of the loop plane aligned along the Burgers vector 
of each loop. Therefore, in configuration A, the ratio of nearscrew to nearedge 
characters is zero. On approaching the upper yield point, the loops extend into long 
screw dipoles, as reflected in a marked change in the character distribution where 

the edge peak vanishes altogether but another sharp peak appears near the screw 
character. For instance, in configuration B, the ratio of nearscrew to nearedge 
characters reaches 397. By comparison, in a random (uniform over the unit sphere) 
distribution of line orientations, shown as the dashed line on the right frame, the 
same ratio is equal to unity. This rapid redistribution from ‘all edges’ to ‘mostly 
nearscrew’ results from the anisotropy of dislocation mobility that is common to 
bodycentredcubic metals; mobility of the screw dislocations is much lower than 
that of any other character, provided the temperature and/or dislocation velocities 
are not too high. At and past yield, the dislocations begin to collide, react and form 
a junction network in which most lines are seen to bend (bow) between two ends 
tied at junctions, manifested in a notable spreading of the screw peak. Although 
decreasing from its value at yield, the ratio of nearscrew to nearedge characters 
remains high (at 86 in configuration C). At and beyond saturation strain about 0.4, 
the distribution of dislocation characters itself becomes stationary.

Although junction networks produced in our highrate straining simulations 
are very dense and the flow stress is very high, forcing the dislocations to bow out 
considerably, we observe the screw character to remain dominant over the entire 
range of strain rates that we explored.
Effects of model size on simulation results. MD simulations, just as  numerical 
simulations of any kind, are constrained by currently available computational 
resources, making it necessary to ensure that the dimensions of the  simulation 
 volume are at least minimally sufficient for the simulation results to be 
 representative of the property or behaviour of interest (bulk metal plasticity in our 
case), even if simulations of the kind we report here are already extremely expensive 
and require massively parallel computing on unprecedented scales.

In Extended Data Fig. 10 we show the stress–strain and density–strain curves 
obtained in simulations performed under strain rate × 1 (1.11 ×  107 s-1; midrange 
of the strain rates we explored). The thick solid black lines in both figures  represent 
an MD simulation performed in the 1:2:4 brickshaped periodic box with about 
268 million atoms, precisely eight times greater than our standard  simulation 
 volume of about 33 million atoms. Data from the standardsized  simulations 
are also presented in the same figure for comparison. To evaluate statistical 
 variations in the predicted strain response, we also performed eight independent 
 standardsized simulations, each of which was initialized to contain 24 prismatic 
dislocation loops (sources), but that were differently positioned in the simula
tion volume. Our simulation with 268 million atoms predicts a strain response 
that is identical, within statistical variations, to that of the standardsized model. 
Furthermore, it appears that the simulated plasticity response is selfaveraging in 
the sense that the stress–strain and density–strain curves obtained by averaging 
over eight smaller simulations are essentially the same as the corresponding curves 
obtained in the simulation of eight times greater size.

Deciding whether the simulation volume is sufficiently large for dynamic 
 simulations of metal strength is a delicate issue. Simulation volumes that appear 
to be sufficiently large under one set of strain conditions may be inadequate under 
other conditions. Straining rate dependence is a relevant example. Many of our 
initial straining simulations were performed at rate 2.7 ×  108 s-1 using a model of 
tantalum with 33 million atoms, which appears to be adequate—not too noisy, a 
good number of dislocations, and so on—for straining simulations at this specific 
rate (and higher). Yet the same volume appears to be a bit small for straining at rate 
1.12 ×  107 s-1, owing to a considerably lower dislocation density reached at this 
lower rate (as seen from Extended Data Fig. 10, the simulation size does not seem 
to affect the averages, but the simulated response in the smaller volume is rather 
noisy). To reduce statistical variations, it was desirable to increase the simulation 
volume for simulations at this rate; this is why we eventually ran the 1.12 ×  107 s-1 
simulation in the larger, 268millionatom box.

On the basis of experience, our recipe for selecting the system size boils down 
to the following considerations: we would like each dislocation to experience on 
 average multiple (about 20) collisions and to not travel more than one box length 
over its lifetime in a simulation. The frequency of dislocation collisions and the 
distance each dislocation travels in a single simulation both depend on the  resulting 
dislocation density. Because the latter is not known in advance,  experimentation 
and adjustments to the simulation volume size may be required. For an MD 
 simulation to conform to the justmentioned requirements, the  number of 
 dislocations should be no less than 5,000. Given that dislocation density decreases 
with  decreasing rate, any reduction in the strain rate, in addition to having to 
 integrate the MD equations of motion over longer time intervals, generally requires 
larger simulation volumes, which increases the computational cost still further. 
For  example, at the much lower dislocation densities of about 1012 m-2 that are 
typical of quasistatic straining experiments, a straightforward estimate for a cube
shaped simulation volume that is sufficiently large to contain 5,000 dislocations 
yields a size of about 17 μ m (around 1014 tantalum atoms). Given that it would take 
1015 time steps to integrate the MD trajectory to 1 s of simulated time, direct MD  
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simulations of such magnitude would require computational resource, measured 
for example in the units of atoms·steps, about 11 orders of magnitude greater than 
we have expended on our largest simulation performed at rate 106 s-1.

We continue to be mindful that size effects are possible at still larger scales. 
This is because elastic interactions are fundamentally scalefree (polynomial) and 
there may not be any characteristic length scale present in the system. Therefore, 
dislocation microstructure in a single crystal may well prove to be scaleinvariant 
or fractal38. In the context of numerical simulations of dislocation ensembles, no 
size may be large enough to make simulation results completely sizeindependent 
in a strict sense.
Data availability. The data that support the findings of this study are available 
from the corresponding author on reasonable request.
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Extended Data Figure 1 | Plastic yield response depends on the initial 
density of dislocation sources. Stress as a function of true strain and 
specimen size computed in three MD simulations of compression at  
rate × 25 from three different initial configurations of dislocation sources.
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Extended Data Figure 2 | Detecting twinning during straining 
simulations. Stress (dashed curve) and the volume fraction of twins  
(solid curve) as a function of true strain under compression at rate × 5 and 
temperature 25 K. The twin fraction was computed using the GSA.
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Extended Data Figure 3 | Continuous cooling during straining permits 
detection of a twinning transition. Volume fraction of twins (solid curve) 
and flow stress (dashed curve) as a function of temperature, computed 
in a simulation at fixed rate × 5 in which temperature was reduced at a 
constant rate from 300 K to 10 K. A twinning transition is identified by the 
temperature at which the twin fraction begins to rise rapidly from zero. 
Preceding this simulation, the crystal was prestrained at the same rate  
× 5 and a fixed temperature T =  300 K, where it attained a steady flow 
stress of 3.2 GPa.
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Extended Data Figure 4 | Relaxation of dislocation density after 
unloading of two crystals pre-strained at rate ×75. The blue line 
represents isothermal relaxation after isothermal straining at T =  300 K. 
The red line depicts additional relaxation after two opposite surfaces of 
the simulated crystal were exposed to vacuum. The black line is adiabatic 
relaxation after adiabatic straining. Both isothermal and adiabatic 
relaxation simulations start at 2.5 ns in the end of isothermal and adiabatic 
prestraining simulations (not shown).
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Extended Data Figure 5 | Kneading the metal. Stress as a function of true 
(von Mises) strain, computed under compression at constant true rate  
× 25 along the three principal axes of the crystal. After compressing the 

crystal to onequarter of its initial length along the z axis, the strain axis is 
changed from z to y, from y to x, and then from x back to z. Letters above 
the stress–strain curves label the axes for each compression cycle.
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Extended Data Figure 6 | Evolution of dislocation network topology 
under compressive strain at rate ×1. Following rapid dislocation 
multiplication at yield, regular binary junctions appear first (red line) 
closely followed by ternary multijunctions (black line). After reaching 
stationary flow at a strain of about 0.4, dislocation density and network 
composition (topology) remain stationary within statistical noise.
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Extended Data Figure 7 | Network evolution along a stepwise increase 
in the strain rates. The number of binary junctions along a stepwise strain 
trajectory is shown as red circles and the solid red line, and the number 
of ternary junctions is shown as green squares and the solid green line. 
The dashed blue line shows the stepwise strain trajectory with strain rates 
marked at each rate step. The thin solid lines show the numbers of binary 

(red) and ternary (green) junctions along continuations of the interrupted 
straining steps. The inset shows the ratio of the number of ternary 
junctions to the number of binary junctions attained in the saturated flow 
state as a function of strain rate. Error bars are the standard deviation from 
the mean values.
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Extended Data Figure 8 | Evolution of dislocation characters under 
compression at rate ×25. a, Histograms of dislocation character angle 
distributions computed for configurations A (black bar near zero), B (red 
bars) and C (open bars), which are marked along the strain trajectory in b. 
For reference, the dashed line depicts a hypothetical uniform distribution 

of character angles with the same integral length of dislocations as 
in configuration C. The histogram counts are over the bins along the 
log[cos(θ)] axis. b, Ratio of the total length of nearscrew dislocations to 
the total length of nearedge dislocations as a function of strain.
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Extended Data Figure 9 | Differential slip trace analysis reveals 
how dislocations move and interact. a, The blue lines show positions 
and shapes of the dislocation lines in the initial configuration and the 
green lines show dislocations in the final configuration attained a few 
picoseconds later. The grey ‘slip traces’ consist of atoms whose local 
von Mises shear strain accumulated between the initial and the final 
dislocation positions exceeds the 0.15 threshold. Only a relatively small 
fraction of dislocations had swept substantial areas, whereas positions of 
most other dislocations in the two configurations coincide, suggesting 
little or no motion over the time interval. b, A magnified fragment of the 
same differential plot showing grey areas swept by several dislocations 

in more detail. The smooth step seen on the slip trace in the foreground 
reveals a ‘jog’ (a turn of a dislocation line inside a crystal) on the moving 
dislocation. c, Crossslip of a screw dislocation from its initial position 
(blue) to its final position (green). The shape of the cylindrical traced area 
reveals the detailed trajectory of the screw dislocation between its initial 
and final positions. d, Annihilation of two dislocations, as evidenced 
by a slip trace area bounded on its two sides by two blue lines: one 
straight screw dislocation above and one curved dislocation below. That 
annihilation has taken place is deduced from the absence of green lines, 
which would otherwise show final positions of the two dislocations.
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Extended Data Figure 10 | Effect of simulation volume size on the 
strain response. a, Stress–strain response under straining at rate × 1 
(1.11 ×  107 s-1). The thick red line is the stress–strain response simulated 
in a volume eight times greater (about 268 million atoms) than the one 
used in most other simulations. The thin grey lines correspond to eight 

independent simulations at the same rate, but performed in the standard
sized volume with about 33 million atoms. The thick black line was 
obtained by averaging over these eight simulations. b, The corresponding 
density–strain curves, with line colours and types matching the stress–
strain curves on the left.
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