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how a system evolves through space and time, parallelism might 
involve simultaneously calculating many grid elements on a spatial 
grid (spatial parallelism) or many time steps in the simulation 
(temporal parallelism), or both. 

Although spatial parallelism is ubiquitous in scientific  
computing, parallel time integration is still a nascent area for 
exploiting performance gains. Researchers began exploring the 
method back in the 1960s, but it only gained traction in the scientific 
computing community over the last decade. The reason for this 
latent interest, surmises Livermore computational mathematician 
Jacob Schroder, is that the approach is more difficult to execute than 
more traditional methods, and it seems counterintuitive, since to 
humans, time is a sequential concept. 

Even now, researchers working on parallel time integration 
face some skepticism, especially from individuals who have not 
yet exhausted their opportunities for accelerating application 
performance through more conventional approaches. Computational 
mathematician Rob Falgout says, “The problem is that many people 
have not yet faced a bottleneck in their work, and thus they are 
hard to convince regarding the utility of this method. For them, 
the issue is down the road, but I find it difficult to imagine that 
they will not have to address it eventually. Scientists are always 
striving for greater simulation accuracy.” He suggests that since 
greater accuracy generally requires more computationally expensive 

IN 1965, Intel cofounder Gordon Moore predicted that the  
  number of transistors in an integrated circuit would double every 

year, enhancing overall processor performance by increasing clock 
speed—the rate at which the processors can execute instructions. 
Ten years later, Moore revised his prediction, reducing the rate of 
doubling to every two years, a trend that—rather astonishingly—
held true for decades. However, by the early 2000s, the pace of 
advancement in clock speed had slowed as chip components 
approached fundamental limits in size and the upper bounds of 
energy usage.

The rapid rise in computing power, once made possible by the 
succession of ever faster, smaller, and more affordable transistors, 
enabled scientists to develop and run increasingly complex—and 
computationally demanding—simulations without lengthening the 
time to solution. As improvements to processor speeds wane, those 
who design and use such scientific applications have been faced 
with the specter of plateauing application performance. Fortunately, 
researchers continue to look beyond hardware innovations, such as 
chip components, to speed up simulations by finding and refining 
application- and algorithm-based methods for reducing solution 
time, most notably through increased use of parallelism. The 
focus on parallelism is particularly important because increases to 
computing power today and in the future will occur only through 
more, not faster, processors.

Software Offers Solutions
Parallel processing involves programming a computer system 

to perform certain tasks simultaneously using multiple processors, 
rather than sequentially. This approach is essential for efficient 
operations on today’s high-performance computing systems, which 
might have thousands or even millions of processors. For a typical 
scientific simulation, intended to help researchers understand 

(below left) Typically, time steps in a simulation are solved sequentially, as 

depicted in this conceptual image that shows figures passing information 

from one to another in order. (below right) Parallel time integration 

techniques use the answers from less precise versions of the problem 

to accelerate the calculation of finer scale versions, which allows the 

application to more rapidly converge to a solution of the desired accuracy.
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simulations, these researchers will ultimately need to exploit every 
possible avenue for reducing the time to solution for their codes.

At Lawrence Livermore, home to a host of large and sophisticated 
applications, improvements in application speed and accuracy 
are driven by national and global security challenges, and thus 
the need for new approaches is more immediate here than at 
many institutions. Fortunately, with support from the Laboratory 
Directed Research and Development Program, Falgout, Schroder, 
and their Livermore colleagues have developed a promising 
solution—a novel software that works in tandem with existing 
high-performance computing applications to calculate all of a 
problem’s time steps simultaneously. Called XBraid, the software 
has decreased solution time by as much as 50 times for some 
types of simulations. (See S&TR, September 2016, pp. 4–11.)

Scalable and Nonintrusive
As the name suggests, XBraid functions by “braiding” multiple 

timelines of differing accuracies together for a faster solution, using 
multigrid methods similar to those the team has successfully applied 
to speed up spatial calculations. Schroder 
provides a simple example. If a scientist wants 
to predict the temperature for a given city with 
a high level of fidelity—say, by calculating 
temperature at an interval of once a second for 
a whole year—and approaches the problem in 
the standard fashion, the system would have to 
calculate some 31 million time steps sequentially. 
By incorporating XBraid, the application would 
instead simultaneously calculate the solution 
at several different levels of detail—predicting 
the temperature, for instance, once a day, once 
an hour, once a minute, and once a second. 

In this example, the only timeline 
computed sequentially is the coarsest (least 
precise) one, which has 365 time steps. Those 
coarse-grained solutions are then fed into the 
even finer scale problem (the once-an-hour 
calculation). These solutions are in turn fed 
into the finer scale version of that problem, 
and so on, accelerating the solution process at 
the finest scale. Despite the unconventional 
approach, the accuracy of the results is the 
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this relatively unexplored way to reduce time to solution. 
XBraid speeds up computations and helps applications make 
better use of today’s supercomputers, for which the number of 
processors grows with every generation. Asserts Falgout, “Our 
work is not just an interesting project—it is a necessary one.”

—Rose Hansen

Key Words: algorithm, artificial neural network, GridDyn, machine 
learning, Moore’s law, multigrid, parallelism, parallel time integration, 
power grid, XBraid.

For further information contact Rob Falgout (925) 422-4377  

(falgout2@llnl.gov). 

Livermore-developed, open-source tool for simulating the 
electrical power grid. These simulations offer insight into 
how scheduled interruptions (maintenance, for instance) and 
unscheduled interruptions (weather, equipment malfunctions, or 
even an act of terrorism) might affect the supply and distribution of 
electricity to homes and businesses. The XBraid team focused their 
initial efforts on simulations involving scheduled outages of grid 
components. Running GridDyn on Livermore’s Quartz cluster, the 
team demonstrated a roughly 50-fold speed-up for a power system 
modeling the Western United States. 

“Power grid simulations are one of the more promising 
application areas for parallel time integration,” says Schroder, noting 
that rapid and accurate simulation results are especially important as 
more renewable power is incorporated into the grid. “Researchers 
have a weather model to determine wind speed at different times of 
day. However, one cannot predict precisely when the wind will die,” 
he adds. “If an unexpected disruption occurs, such as if wind power 
drops sooner than expected, it creates a sudden cascade of events 
within the network. Fortunately, we are starting to see some success 
with simulating unexpected disruptions.” 

XBraid has also produced favorable results in other challenging 
areas, such as training artificial neural networks. (See S&TR, June 
2016, pp. 16–19.) With this popular and effective method of machine 
learning, data (often in the form of digitized images) are fed through 
a network, and the resulting output is compared to the desired target, 
which typically classifies the data into a category. Errors between 
the output and the target are “back propagated” through the network, 
assigning blame to the parts of the network responsible for the error. 
As training proceeds, links in the network strengthen and weaken 
themselves and converge toward a configuration that minimizes 
overall error. These networks “learn” by sequentially processing 
thousands or millions of such training runs. 

The idea to apply XBraid to machine learning came one day 
when Schroder realized the inherent similarities between the serial 
processing of information in neural network training and that of more 
traditional time-dependent simulations. By treating training runs as 
time steps, the team has successfully applied the method such that a 
50-training-run problem can be used to help solve a 100-training-run 
problem, and so forth. In initial feasibility studies, the team saw a 
six-fold improvement in training time over 13,000 training runs. The 
work is still in its early stages, but Schroder is optimistic. He says, 
“Parallel time integration can be highly valuable for machine learning 
because it provides a new perspective and novel parallel capabilities 
to the development community.” 

A Necessary Step
XBraid provides a nonintrusive, powerful, open-source 

solution to the bottleneck posed by performing sequential time 
steps for problems involving thousands or millions of time steps. 
Thus far, the XBraid team has demonstrated the viability of 

same, up to a user-defined tolerance. Schroder says, “The goal 
of parallel in time is not to compute a different solution than 
sequential calculation methods—it is simply to do it more quickly.” 
Further, the method is scalable, so the problem can be sped up by 
increasing the number of processors working on the calculation. 

Although XBraid is neither the first nor the sole successful 
method of solving time intervals concurrently, its nonintrusive nature 
provides a huge advantage to those who steward and use today’s 
large scientific applications. XBraid was created with Livermore’s 
current stable of applications in mind, allowing the applications 
to take advantage of parallel time integration without having to be 
rewritten, which for a large application could easily take a dozen or 
more software developers 5 to 10 years to complete.

Power Grids and Neural Networks
Over the past few years, the XBraid team has experimented 

with optimizing XBraid for various problems, many of which 
have never successfully incorporated such methods. For one 
project, the team added temporal parallelism to GridDyn, a 
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Sequential training for artificial neural networks often involves showing 

the network a series of labeled digital images to “teach” it to categorize 

data correctly. Livermore researchers have sped up this popular 

machine-learning method by exploiting its similarities with sequential 

time-step techniques used in more standard scientific simulations.

This conceptual drawing illustrates the vast, complex 

resources that may exist in the electrical grid of the 

future. Pairing the XBraid algorithm with Livermore’s 

GridDyn simulation software could enable faster yet 

accurate simulations of grid operations, which could 

benefit both operations and contingency planning.
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