
 Research Highlights S&TR July/August 2018 S&TR July/August 2018 XBraid

20
21Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

how a system evolves through space and time, parallelism might
involve simultaneously calculating many grid elements on a spatial
grid (spatial parallelism) or many time steps in the simulation
(temporal parallelism), or both.

Although spatial parallelism is ubiquitous in scientific
computing, parallel time integration is still a nascent area for
exploiting performance gains. Researchers began exploring the
method back in the 1960s, but it only gained traction in the scientific
computing community over the last decade. The reason for this
latent interest, surmises Livermore computational mathematician
Jacob Schroder, is that the approach is more difficult to execute than
more traditional methods, and it seems counterintuitive, since to
humans, time is a sequential concept.

Even now, researchers working on parallel time integration
face some skepticism, especially from individuals who have not
yet exhausted their opportunities for accelerating application
performance through more conventional approaches. Computational
mathematician Rob Falgout says, “The problem is that many people
have not yet faced a bottleneck in their work, and thus they are
hard to convince regarding the utility of this method. For them,
the issue is down the road, but I find it difficult to imagine that
they will not have to address it eventually. Scientists are always
striving for greater simulation accuracy.” He suggests that since
greater accuracy generally requires more computationally expensive

IN 1965, Intel cofounder Gordon Moore predicted that the
  number of transistors in an integrated circuit would double every

year, enhancing overall processor performance by increasing clock
speed—the rate at which the processors can execute instructions.
Ten years later, Moore revised his prediction, reducing the rate of
doubling to every two years, a trend that—rather astonishingly—
held true for decades. However, by the early 2000s, the pace of
advancement in clock speed had slowed as chip components
approached fundamental limits in size and the upper bounds of
energy usage.

The rapid rise in computing power, once made possible by the
succession of ever faster, smaller, and more affordable transistors,
enabled scientists to develop and run increasingly complex—and
computationally demanding—simulations without lengthening the
time to solution. As improvements to processor speeds wane, those
who design and use such scientific applications have been faced
with the specter of plateauing application performance. Fortunately,
researchers continue to look beyond hardware innovations, such as
chip components, to speed up simulations by finding and refining
application- and algorithm-based methods for reducing solution
time, most notably through increased use of parallelism. The
focus on parallelism is particularly important because increases to
computing power today and in the future will occur only through
more, not faster, processors.

Software Offers Solutions
Parallel processing involves programming a computer system

to perform certain tasks simultaneously using multiple processors,
rather than sequentially. This approach is essential for efficient
operations on today’s high-performance computing systems, which
might have thousands or even millions of processors. For a typical
scientific simulation, intended to help researchers understand

(below left) Typically, time steps in a simulation are solved sequentially, as

depicted in this conceptual image that shows figures passing information

from one to another in order. (below right) Parallel time integration

techniques use the answers from less precise versions of the problem

to accelerate the calculation of finer scale versions, which allows the

application to more rapidly converge to a solution of the desired accuracy.

Interweaving Timelines
for Faster Solutions

Time-step process Parallel time integration

Time step 1

Time step 3

Time step 7

Level 1

Level 2

Level 3

simulations, these researchers will ultimately need to exploit every
possible avenue for reducing the time to solution for their codes.

At Lawrence Livermore, home to a host of large and sophisticated
applications, improvements in application speed and accuracy
are driven by national and global security challenges, and thus
the need for new approaches is more immediate here than at
many institutions. Fortunately, with support from the Laboratory
Directed Research and Development Program, Falgout, Schroder,
and their Livermore colleagues have developed a promising
solution—a novel software that works in tandem with existing
high-performance computing applications to calculate all of a
problem’s time steps simultaneously. Called XBraid, the software
has decreased solution time by as much as 50 times for some
types of simulations. (See S&TR, September 2016, pp. 4–11.)

Scalable and Nonintrusive
As the name suggests, XBraid functions by “braiding” multiple

timelines of differing accuracies together for a faster solution, using
multigrid methods similar to those the team has successfully applied
to speed up spatial calculations. Schroder
provides a simple example. If a scientist wants
to predict the temperature for a given city with
a high level of fidelity—say, by calculating
temperature at an interval of once a second for
a whole year—and approaches the problem in
the standard fashion, the system would have to
calculate some 31 million time steps sequentially.
By incorporating XBraid, the application would
instead simultaneously calculate the solution
at several different levels of detail—predicting
the temperature, for instance, once a day, once
an hour, once a minute, and once a second.

In this example, the only timeline
computed sequentially is the coarsest (least
precise) one, which has 365 time steps. Those
coarse-grained solutions are then fed into the
even finer scale problem (the once-an-hour
calculation). These solutions are in turn fed
into the finer scale version of that problem,
and so on, accelerating the solution process at
the finest scale. Despite the unconventional
approach, the accuracy of the results is the

XBraidXBraid

22 23Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

S&TR July/August 2018 S&TR July/August 2018

this relatively unexplored way to reduce time to solution.
XBraid speeds up computations and helps applications make
better use of today’s supercomputers, for which the number of
processors grows with every generation. Asserts Falgout, “Our
work is not just an interesting project—it is a necessary one.”

—Rose Hansen

Key Words: algorithm, artificial neural network, GridDyn, machine
learning, Moore’s law, multigrid, parallelism, parallel time integration,
power grid, XBraid.

For further information contact Rob Falgout (925) 422-4377

(falgout2@llnl.gov).

Livermore-developed, open-source tool for simulating the
electrical power grid. These simulations offer insight into
how scheduled interruptions (maintenance, for instance) and
unscheduled interruptions (weather, equipment malfunctions, or
even an act of terrorism) might affect the supply and distribution of
electricity to homes and businesses. The XBraid team focused their
initial efforts on simulations involving scheduled outages of grid
components. Running GridDyn on Livermore’s Quartz cluster, the
team demonstrated a roughly 50-fold speed-up for a power system
modeling the Western United States.

“Power grid simulations are one of the more promising
application areas for parallel time integration,” says Schroder, noting
that rapid and accurate simulation results are especially important as
more renewable power is incorporated into the grid. “Researchers
have a weather model to determine wind speed at different times of
day. However, one cannot predict precisely when the wind will die,”
he adds. “If an unexpected disruption occurs, such as if wind power
drops sooner than expected, it creates a sudden cascade of events
within the network. Fortunately, we are starting to see some success
with simulating unexpected disruptions.”

XBraid has also produced favorable results in other challenging
areas, such as training artificial neural networks. (See S&TR, June
2016, pp. 16–19.) With this popular and effective method of machine
learning, data (often in the form of digitized images) are fed through
a network, and the resulting output is compared to the desired target,
which typically classifies the data into a category. Errors between
the output and the target are “back propagated” through the network,
assigning blame to the parts of the network responsible for the error.
As training proceeds, links in the network strengthen and weaken
themselves and converge toward a configuration that minimizes
overall error. These networks “learn” by sequentially processing
thousands or millions of such training runs.

The idea to apply XBraid to machine learning came one day
when Schroder realized the inherent similarities between the serial
processing of information in neural network training and that of more
traditional time-dependent simulations. By treating training runs as
time steps, the team has successfully applied the method such that a
50-training-run problem can be used to help solve a 100-training-run
problem, and so forth. In initial feasibility studies, the team saw a
six-fold improvement in training time over 13,000 training runs. The
work is still in its early stages, but Schroder is optimistic. He says,
“Parallel time integration can be highly valuable for machine learning
because it provides a new perspective and novel parallel capabilities
to the development community.”

A Necessary Step
XBraid provides a nonintrusive, powerful, open-source

solution to the bottleneck posed by performing sequential time
steps for problems involving thousands or millions of time steps.
Thus far, the XBraid team has demonstrated the viability of

same, up to a user-defined tolerance. Schroder says, “The goal
of parallel in time is not to compute a different solution than
sequential calculation methods—it is simply to do it more quickly.”
Further, the method is scalable, so the problem can be sped up by
increasing the number of processors working on the calculation.

Although XBraid is neither the first nor the sole successful
method of solving time intervals concurrently, its nonintrusive nature
provides a huge advantage to those who steward and use today’s
large scientific applications. XBraid was created with Livermore’s
current stable of applications in mind, allowing the applications
to take advantage of parallel time integration without having to be
rewritten, which for a large application could easily take a dozen or
more software developers 5 to 10 years to complete.

Power Grids and Neural Networks
Over the past few years, the XBraid team has experimented

with optimizing XBraid for various problems, many of which
have never successfully incorporated such methods. For one
project, the team added temporal parallelism to GridDyn, a

D
is

tri
bu

tio
n

Tr
an

sm
is

si
on Power plant

600–1,700 megawatts

Wind farm

StorageStorage

Industrial power plantFactory

Plug-in electric vehicle

Solar photovoltaic panel

Low voltage
<50 kilovolts

Hydroelectric power plant
<200 megawatts

Factory

Large factory

Solar farm

Small solar farm

High voltage
<69 kilovolts

Extrahigh voltage
<230 kilovolts

Sequential training for artificial neural networks often involves showing

the network a series of labeled digital images to “teach” it to categorize

data correctly. Livermore researchers have sped up this popular

machine-learning method by exploiting its similarities with sequential

time-step techniques used in more standard scientific simulations.

This conceptual drawing illustrates the vast, complex

resources that may exist in the electrical grid of the

future. Pairing the XBraid algorithm with Livermore’s

GridDyn simulation software could enable faster yet

accurate simulations of grid operations, which could

benefit both operations and contingency planning.

Tr
ai

ni
ng

In
pu

t
R

ec
og

ni
tio

n
R

es
ul

t

