
13Lawrence Livermore National Laboratory

AS supercomputing systems continue to grow, the performance
 of applications running on these machines is increasingly

threatened by hardware faults. On current petascale machines, the
number of processor cores ranges from hundreds of thousands
to millions. (A core is the smallest unit of a computer that
independently performs calculations.) Operating speeds on
petascale systems can exceed 1 quadrillion (1015) floating-point
operations per second (flops). By 2020, exascale systems made
with hundreds of millions of cores will have 1,000 times the
performance of today’s petascale systems, running calculations at a
rate of 1 quintillion (1018) flops.

The large number of components on a supercomputing system
increases the rate of hardware faults, which can cause applications
to abort and performance to degrade. More importantly, they
may corrupt results. To address this problem, computational
scientists, with funding from the Laboratory Directed Research and
Development Program, are developing methods to detect faults
in supercomputers and help systems recover from errors that do
occur, even on exascale systems.

Bronis de Supinski, who leads the Exascale Computing
Technologies project in the Laboratory’s Center for Applied
Scientific Computing, says that the more nodes, components, and
memory a system has, the greater its error rate will be. For example,
he says, “If you’re the only person driving down a road, there is a
small chance you could have an accident. But if you’re surrounded
by 10,000 other cars, your chances of having an accident rise.”

It is the same with computer systems. “We tend to think
of computers as infallible,” says de Supinski, “but physical
processes—such as cosmic-ray strikes—can change the flow
of electrons and affect what’s on the memory cell.”

Computer scientist Greg Bronevetsky adds that a computer
is a physical device, not an abstract idea. “The projects at

the Laboratory
involve such
complicated physics, no one
can sit down and write out the calculations
to solve them,” says Bronevetsky, who received a
Presidential Early Career Award for Scientists and Engineers in
2011. “The computer is a faster, much more powerful pencil, but
like all devices made of parts from different vendors, an interaction
between various components can lead to undesired outcomes.
Something as simple as one chip dying—a problem we call a hard-
stop fault—can cause the entire computation to crash.”

Fault Finding
Hard-stop faults are the most common type of error and can

stop an entire compute job. They are normally dealt with by
writing checkpoints, a method in which the entire state of a job
is saved and stored on a parallel file system. If a failure occurs,
a program’s state can be rolled back, or restored, from the most
recent checkpoint, and operation resumed. But writing a single
checkpoint to a parallel file system can require tens of minutes on
a supercomputer. “Saving information somewhere else so we can
bring it back grows expensive,” de Supinski says. “If faults happen
often, the system spends almost all of its time writing checkpoints
and rolling back.”

In addition, storage disk speeds are much slower than
processor speeds. Their performance has not increased
significantly over the years, even though processor performance
has accelerated. Because of this bottleneck, an exascale system
might spend more time saving and restoring information than
performing computations.

 Research Highlights

Finding and Fixing a
Supercomputer’s Faults

Performance bottleneck

Parallel file system

Standard approach

SCR method

Parallel file system

“Forest” of writers

Lawrence Livermore National Laboratory14

Fault-Tolerant Computing S&TR June 2012

recovered 85 percent of the faults that occurred. “We are also
looking into staggering the times at which checkpoints are written,”
de Supinski says. “Typically, a job computes for a while and then
takes a checkpoint. Disk traffic dramatically peaks in bursts because
many jobs are writing at once. We found that the higher demand
on the file system—this burst of pounding—makes the system less
reliable. SCR can help us smooth the input/output traffic.”

The team extended SCR to use a technique called Remote
Direct Memory Access, which pulls data off the node without
involving the processor in data movement. Different nodes can be
coordinated to schedule their writing to the file system. Moody
and Livermore scientist Kathryn Mohror then worked with several
summer students to compress multiple checkpoints into a single
file and reduce the number of nodes writing to the file system at
one time. This approach led to more reliable performance.

Flipping a Bit
Another type of hardware error is a soft fault. These faults

are insidious: Although the job continues to compute, the data
are corrupted. “For example,” says Bronevetsky, “if a charged
particle goes through a transistor, it throws off a little piece
of the computation.” This error is known as “flipping a bit”
because the binary code is switched from 0 to 1 or 1 to 0. When
researchers analyzed BlueGene/L, the Laboratory’s 108,000-node
supercomputer, they found that one data-cache bit flip occurred
every four hours. “The machines are expensive, and we want them
to do as much productive work as possible,” Bronevetsky says. “If
an application that takes a week to run encounters a failure every
four hours, the odds are that it will never complete.”

To make applications more tolerant to bit flips, Livermore
computer scientist and postdoctoral researcher Marc Casas Guix
adapted the algebraic multigrid (AMG) algorithm, a powerful
solver of sparse linear equations. AMG solves linear systems at
multiple levels of granularity. The fine-grained solve steps reduce
errors that result from inconsistencies between nearby grid cells,
and the coarse-grained steps reduce inconsistencies between larger
regions of space.

Laboratory researchers then flip bits in AMG to determine
the code regions and data structures that are vulnerable to such
errors. Based on the consequences, they can choose the most
appropriate resilience strategy. To guard against hard failures,
they can checkpoint data, automatically recalculate corrupted data
structures, or run two copies of the same program simultaneously
in case one version becomes corrupted. “AMG is good at
overcoming errors by fixing them locally and iteratively,” says
Bronevetsky. “In practice, it survives faults well.”

Clusters to the Rescue
When a supercomputer system computes correctly but the run

time lasts much longer than normal, a performance fault is the
culprit. Performance faults are challenging to identify because

To reduce the time a machine requires to write checkpoints, a
team of Livermore scientists led by Adam Moody developed the
Scalable Checkpoint/Restart (SCR) approach. The SCR multilevel
system can store checkpoints to a compute node’s local memory—
its random access or flash memory or even its disk—in addition to
the parallel file system. Regular checkpoints can be saved quickly
to local memory and duplicated on other nodes. If one node fails,
its data can be restored from a duplicate. With this technique, the
parallel file system is accessed much less frequently.

SCR stores, or caches, only the most recent checkpoints,
discarding an older one as each new checkpoint is saved. It can also
apply a redundancy scheme to the cache and recover checkpoints
after a failure disables a small portion of the system. SCR proved
its value when used with the pF3D code, which simulates laser–
plasma interactions in support of the National Ignition Facility.
In over 5 million node-hours of computation with pF3D, SCR

The Scalable Checkpoint/Restart (SCR) method improves code

performance by writing checkpoints to a compute node’s local memory

rather than to a parallel file system.

15Lawrence Livermore National Laboratory

S&TR June 2012 Fault-Tolerant Computing

clustering algorithms get slower with large numbers of cores,” says
Gamblin. “CAPEK doesn’t run much slower on 131,072 cores
than it does on one. No matter how many cores are in use, it takes
less than 1 second to run, which is fast enough for online use in
production.”

Integrated Support for Laboratory Missions
De Supinski acknowledges that other new techniques are

needed to keep predictive simulations running efficiently on
exascale supercomputers. But SCR, the modified AMG algorithm,
and CAPEK are important advances, making applications more
tolerant of hardware faults.

“Ensuring the performance of our petascale and future exascale
systems is critical to the success of many Laboratory missions,”
says de Supinski. These machines provide the computational
power researchers need for a wide range of 21st-century efforts,
from modeling new materials to studying fusion reactions and
predicting the effects of a changing climate.

—Kris Fury

Key Words: algebraic multigrid (AMG) algorithm, checkpoint, Clustering
Algorithm with Parallel Extended K-Medoids (CAPEK), compute node,
exascale computing, hard fault, performance fault, petascale computing,
Scalable Checkpoint/Restart (SCR), soft fault, supercomputing.

For further information contact Bronis de Supinski (925) 422-1062

(bronis@llnl.gov).

they may occur on any of hundreds of thousands of processors in
a petascale system. A Livermore team led by computer scientist
Todd Gamblin has developed an automated machine-learning
technique called CAPEK (Clustering Algorithm with Parallel
Extended K-Medoids) that can quickly find faulty processors while
a calculation is running.

CAPEK uses a fast sampling method that quickly identifies
groups of processors with similar performance characteristics. This
analysis gives each processor a general picture of the behavior
of the system as a whole. “To know what’s abnormal, we must
first determine what’s normal,” says Gamblin, who first studied
load imbalance and developed compression techniques while
collaborating with Livermore scientists on his dissertation. Once
each processor receives a description of “normal” behavior from
CAPEK, it can compare this to its own behavior and identify
itself as either normal or faulty. Isolating the faulty processors
significantly reduces the cost of analyzing an application’s
performance. “CAPEK has proven to be a good method for
determining when node behavior is different or suspicious,” says
Gamblin. “With that information, we don’t have to examine all the
nodes, only the ones affected.”

CAPEK is used for many types of analysis including statistical
trace sampling and scalable detection of performance anomalies.
Gamblin has worked with de Supinski, Bronevetsky, and
collaborators at Purdue University to incorporate CAPEK with
AutomaDeD, which automatically finds performance faults, so the
tool can be scaled to next-generation systems. “Most traditional

SCR recovered 85 percent of the faults that occurred in more than 5 million

node-hours of computation with the pF3D code, which simulates laser–

plasma interactions such as the one shown here.

A clustering algorithm called CAPEK (Clustering Algorithm with Parallel

Extended K-Medoids) samples performance data from the various

processors on a supercomputing system and locates small clusters with

similar characteristics. The clusters quickly reveal outliers whose behavior

is suspicious.

Outlier task

Cluster medoid

